BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33020190)

  • 41. Complete assignment of neurophysin disulfides indicates pairing in two separate domains.
    Burman S; Wellner D; Chait B; Chaudhary T; Breslow E
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):429-33. PubMed ID: 2911588
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Confetti: a multiprotease map of the HeLa proteome for comprehensive proteomics.
    Guo X; Trudgian DC; Lemoff A; Yadavalli S; Mirzaei H
    Mol Cell Proteomics; 2014 Jun; 13(6):1573-84. PubMed ID: 24696503
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteomic analyses using Grifola frondosa metalloendoprotease Lys-N.
    Hohmann L; Sherwood C; Eastham A; Peterson A; Eng JK; Eddes JS; Shteynberg D; Martin DB
    J Proteome Res; 2009 Mar; 8(3):1415-22. PubMed ID: 19195997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Digging deeper into ancient skeletal proteomes through consecutive digestion with multiple proteases.
    Fagernäs Z; Troché G; Olsen JV; Welker F
    J Proteomics; 2024 Apr; 298():105143. PubMed ID: 38423353
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Less is More: Membrane Protein Digestion Beyond Urea-Trypsin Solution for Next-level Proteomics.
    Zhang X
    Mol Cell Proteomics; 2015 Sep; 14(9):2441-53. PubMed ID: 26081834
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of Protease on Ultraviolet Photodissociation Mass Spectrometry for Bottom-up Proteomics.
    Greer SM; Parker WR; Brodbelt JS
    J Proteome Res; 2015 Jun; 14(6):2626-32. PubMed ID: 25950415
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion.
    Pan Y; Cheng K; Mao J; Liu F; Liu J; Ye M; Zou H
    Anal Bioanal Chem; 2014 Oct; 406(25):6247-56. PubMed ID: 25134673
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that platelet glycoprotein IIIa has a large disulfide-bonded loop that is susceptible to proteolytic cleavage.
    Beer J; Coller BS
    J Biol Chem; 1989 Oct; 264(29):17564-73. PubMed ID: 2529261
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification.
    Qin W; Song Z; Fan C; Zhang W; Cai Y; Zhang Y; Qian X
    Anal Chem; 2012 Apr; 84(7):3138-44. PubMed ID: 22413971
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteolysis approach without chemical modification for a simple and rapid analysis of disulfide bonds using thermostable protease-immobilized microreactors.
    Yamaguchi H; Miyazaki M; Maeda H
    Proteomics; 2010 Aug; 10(16):2942-9. PubMed ID: 20544732
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection of Proteome Diversity Resulted from Alternative Splicing is Limited by Trypsin Cleavage Specificity.
    Wang X; Codreanu SG; Wen B; Li K; Chambers MC; Liebler DC; Zhang B
    Mol Cell Proteomics; 2018 Mar; 17(3):422-430. PubMed ID: 29222161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags.
    Fahlman RP; Chen W; Overall CM
    J Proteomics; 2014 Apr; 100():79-91. PubMed ID: 24060996
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.
    Giansanti P; Tsiatsiani L; Low TY; Heck AJ
    Nat Protoc; 2016 May; 11(5):993-1006. PubMed ID: 27123950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The proteomic analysis improved by cleavage kinetics-based fractionation of tryptic peptides.
    Pan Y; Mao J; Deng Z; Dong M; Bian Y; Ye M; Zou H
    Proteomics; 2015 Nov; 15(21):3613-6. PubMed ID: 26256691
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes.
    Aboulaich N; Vainonen JP; Strålfors P; Vener AV
    Biochem J; 2004 Oct; 383(Pt 2):237-48. PubMed ID: 15242332
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments.
    Loziuk PL; Wang J; Li Q; Sederoff RR; Chiang VL; Muddiman DC
    J Proteome Res; 2013 Dec; 12(12):5820-9. PubMed ID: 24144163
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Next-Generation Sequencing for Venomics: Application of Multi-Enzymatic Limited Digestion for Inventorying the Snake Venom Arsenal.
    Amorim FG; Redureau D; Crasset T; Freuville L; Baiwir D; Mazzucchelli G; Menzies SK; Casewell NR; Quinton L
    Toxins (Basel); 2023 May; 15(6):. PubMed ID: 37368658
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maximizing Cumulative Trypsin Activity with Calcium at Elevated Temperature for Enhanced Bottom-Up Proteome Analysis.
    Nickerson JL; Doucette AA
    Biology (Basel); 2022 Oct; 11(10):. PubMed ID: 36290348
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Value of using multiple proteases for large-scale mass spectrometry-based proteomics.
    Swaney DL; Wenger CD; Coon JJ
    J Proteome Res; 2010 Mar; 9(3):1323-9. PubMed ID: 20113005
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved Coverage of the N-Terminome by Combining ChaFRADIC with Alternative Proteases.
    Jiang X; Lao Y; Spicer V; Zahedi RP
    Methods Mol Biol; 2023; 2718():99-110. PubMed ID: 37665456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.