BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33020284)

  • 1. Peak grain forecasts for the US High Plains amid withering waters.
    Mrad A; Katul GG; Levia DF; Guswa AJ; Boyer EW; Bruen M; Carlyle-Moses DE; Coyte R; Creed IF; van de Giesen N; Grasso D; Hannah DM; Hudson JE; Humphrey V; Iida S; Jackson RB; Kumagai T; Llorens P; Michalzik B; Nanko K; Peters CA; Selker JS; Tetzlaff D; Zalewski M; Scanlon BR
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26145-26150. PubMed ID: 33020284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110.
    Steward DR; Bruss PJ; Yang X; Staggenborg SA; Welch SM; Apley MD
    Proc Natl Acad Sci U S A; 2013 Sep; 110(37):E3477-86. PubMed ID: 23980153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation to assess potential groundwater recharge and net groundwater use in a semi-arid region.
    Dash CJ; Sarangi A; Singh DK; Adhikary PP
    Environ Monit Assess; 2019 May; 191(6):371. PubMed ID: 31102073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China.
    Cao X; Wang Y; Wu P; Zhao X; Wang J
    Sci Total Environ; 2015 Oct; 529():10-20. PubMed ID: 26005745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water Level Declines in the High Plains Aquifer: Predevelopment to Resource Senescence.
    Haacker EM; Kendall AD; Hyndman DW
    Ground Water; 2016 Mar; 54(2):231-42. PubMed ID: 26014963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.
    Sesmero JP
    J Environ Manage; 2014 Nov; 144():218-25. PubMed ID: 24956467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Landscape irrigation management for maintaining an aquifer and economic returns.
    Kovacs KF; Mancini M; West G
    J Environ Manage; 2015 Sep; 160():271-82. PubMed ID: 26144558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recharge and groundwater use in the North China Plain for six irrigated crops for an eleven year period.
    Yang X; Chen Y; Pacenka S; Gao W; Zhang M; Sui P; Steenhuis TS
    PLoS One; 2015; 10(1):e0115269. PubMed ID: 25625765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global implications of regional grain production through virtual water trade.
    Masud MB; Wada Y; Goss G; Faramarzi M
    Sci Total Environ; 2019 Apr; 659():807-820. PubMed ID: 31096411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling resources use efficiency and its drivers for water transfer and grain production processes in pumping irrigation system.
    Cui S; Wu M; Huang X; Cao X
    Sci Total Environ; 2022 Apr; 818():151810. PubMed ID: 34813813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley.
    Scanlon BR; Faunt CC; Longuevergne L; Reedy RC; Alley WM; McGuire VL; McMahon PB
    Proc Natl Acad Sci U S A; 2012 Jun; 109(24):9320-5. PubMed ID: 22645352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.
    Wang YB; Wu PT; Engel BA; Sun SK
    Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta.
    Aparicio J; Tenza-Abril AJ; Borg M; Galea J; Candela L
    Sci Total Environ; 2019 Feb; 650(Pt 1):734-740. PubMed ID: 30212704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserving and extending the useful life of the largest aquifer in North America: the future of the High Plains/Ogallala aquifer.
    Sophocleous M
    Ground Water; 2012; 50(6):831-9. PubMed ID: 22823563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "More crop per drop": Exploring India's cereal water use since 2005.
    Kayatz B; Harris F; Hillier J; Adhya T; Dalin C; Nayak D; Green RF; Smith P; Dangour AD
    Sci Total Environ; 2019 Jul; 673():207-217. PubMed ID: 30986680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term (1930-2010) trends in groundwater levels in Texas: influences of soils, landcover and water use.
    Chaudhuri S; Ale S
    Sci Total Environ; 2014 Aug; 490():379-90. PubMed ID: 24867702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources.
    Cochand F; Brunner P; Hunkeler D; Rössler O; Holzkämper A
    Sci Total Environ; 2021 Dec; 798():148759. PubMed ID: 34332390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater depletion embedded in international food trade.
    Dalin C; Wada Y; Kastner T; Puma MJ
    Nature; 2017 Mar; 543(7647):700-704. PubMed ID: 28358074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mine water supply assessment and evaluation of the system response to the designed demand in a desert region, central Saudi Arabia.
    Yihdego Y; Drury L
    Environ Monit Assess; 2016 Nov; 188(11):619. PubMed ID: 27743279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco).
    Re V; Sacchi E; Mas-Pla J; Menció A; El Amrani N
    Sci Total Environ; 2014 Dec; 500-501():211-23. PubMed ID: 25217996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.