These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 33020375)
1. Embryonic Mouse Cardiodynamic OCT Imaging. Lopez AL; Wang S; Larina IV J Cardiovasc Dev Dis; 2020 Oct; 7(4):. PubMed ID: 33020375 [TBL] [Abstract][Full Text] [Related]
2. Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography. Wang S; Lakomy DS; Garcia MD; Lopez AL; Larin KV; Larina IV J Biophotonics; 2016 Aug; 9(8):837-47. PubMed ID: 26996292 [TBL] [Abstract][Full Text] [Related]
3. Open-source, highly efficient, post-acquisition synchronization for 4D dual-contrast imaging of the mouse embryonic heart over development with optical coherence tomography. Faubert AC; Larina IV; Wang S Biomed Opt Express; 2023 Jan; 14(1):163-181. PubMed ID: 36698661 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Imaging of Mouse Embryos and Cardiac Development in Static Culture. Lopez AL; Larina IV Methods Mol Biol; 2021; 2206():129-141. PubMed ID: 32754815 [TBL] [Abstract][Full Text] [Related]
5. Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart. Wang S; Larina I J Biomed Opt; 2020 Aug; 25(8):1-19. PubMed ID: 32762173 [TBL] [Abstract][Full Text] [Related]
6. Dynamic Imaging of Mouse Embryos and Cardiodynamics in Static Culture. Lopez AL; Larina IV Methods Mol Biol; 2018; 1752():41-52. PubMed ID: 29564760 [TBL] [Abstract][Full Text] [Related]
7. Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart. Grishina OA; Wang S; Larina IV J Biophotonics; 2017 May; 10(5):735-743. PubMed ID: 28417585 [TBL] [Abstract][Full Text] [Related]
8. Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography. Wang S; Singh M; Lopez AL; Wu C; Raghunathan R; Schill A; Li J; Larin KV; Larina IV Opt Lett; 2015 Oct; 40(20):4791-4. PubMed ID: 26469621 [TBL] [Abstract][Full Text] [Related]
9. Optical Coherence Tomography for live imaging of mammalian development. Larina IV; Larin KV; Justice MJ; Dickinson ME Curr Opin Genet Dev; 2011 Oct; 21(5):579-84. PubMed ID: 21962442 [TBL] [Abstract][Full Text] [Related]
10. Optogenetic cardiac pacing in cultured mouse embryos under imaging guidance. Lopez AL; Wang S; Larina IV J Biophotonics; 2020 Nov; 13(11):e202000223. PubMed ID: 32692902 [TBL] [Abstract][Full Text] [Related]
11. Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant. Lopez AL; Wang S; Larin KV; Overbeek PA; Larina IV J Biomed Opt; 2015; 20(9):090501. PubMed ID: 26385422 [TBL] [Abstract][Full Text] [Related]
12. Live imaging of blood flow in mammalian embryos using Doppler swept-source optical coherence tomography. Larina IV; Sudheendran N; Ghosn M; Jiang J; Cable A; Larin KV; Dickinson ME J Biomed Opt; 2008; 13(6):060506. PubMed ID: 19123647 [TBL] [Abstract][Full Text] [Related]
13. Optical coherence tomography for embryonic imaging: a review. Raghunathan R; Singh M; Dickinson ME; Larin KV J Biomed Opt; 2016 May; 21(5):50902. PubMed ID: 27228503 [TBL] [Abstract][Full Text] [Related]
14. Following the Beat: Imaging the Valveless Pumping Function in the Early Embryonic Heart. Wang S; Larina IV J Cardiovasc Dev Dis; 2022 Aug; 9(8):. PubMed ID: 36005431 [TBL] [Abstract][Full Text] [Related]
15. A feasibility study of OCT for anatomical and vascular phenotyping of mouse embryo. Choi WJ; Maga AM; Kim ES; Wang RK J Biophotonics; 2020 May; 13(5):e201960225. PubMed ID: 32067352 [TBL] [Abstract][Full Text] [Related]
16. Live imaging of rat embryos with Doppler swept-source optical coherence tomography. Larina IV; Furushima K; Dickinson ME; Behringer RR; Larin KV J Biomed Opt; 2009; 14(5):050506. PubMed ID: 19895102 [TBL] [Abstract][Full Text] [Related]
17. Depth-Resolved Enhanced Spectral-Domain OCT Imaging of Live Mammalian Embryos Using Gold Nanoparticles as Contrast Agent. Huang Y; Li M; Huang D; Qiu Q; Lin W; Liu J; Yang W; Yao Y; Yan G; Qu N; Tuchin VV; Fan S; Liu G; Zhao Q; Chen X Small; 2019 Aug; 15(35):e1902346. PubMed ID: 31304667 [TBL] [Abstract][Full Text] [Related]
18. Imaging of cardiovascular development in mammalian embryos using optical coherence tomography. Garcia MD; Lopez AL; Larin KV; Larina IV Methods Mol Biol; 2015; 1214():151-61. PubMed ID: 25468602 [TBL] [Abstract][Full Text] [Related]
19. Longitudinal Imaging of Heart Development With Optical Coherence Tomography. Jenkins MW; Watanabe M; Rollins AM IEEE J Sel Top Quantum Electron; 2012; 18(3):1166-1175. PubMed ID: 26236147 [TBL] [Abstract][Full Text] [Related]
20. Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation. Rugonyi S; Shaut C; Liu A; Thornburg K; Wang RK Phys Med Biol; 2008 Sep; 53(18):5077-91. PubMed ID: 18723935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]