These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 33020455)
1. Network Code DGNSS Positioning for Faster L1-L5 GPS Ambiguity Initialization. Bakuła M; Uradziński M; Krasuski K Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33020455 [TBL] [Abstract][Full Text] [Related]
2. Instantaneous Ambiguity Reinitialization and Fast Ambiguity Initialization for L1-L2 GPS Measurements. Bakuła M Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050162 [TBL] [Abstract][Full Text] [Related]
3. Precise Method of Ambiguity Initialization for Short Baselines with L1-L5 or E5-E5a GPS/GALILEO Data. Bakuła M Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32748893 [TBL] [Abstract][Full Text] [Related]
4. Improving the Performance of Time-Relative GNSS Precise Positioning in Remote Areas. He K; Weng D; Ji S; Wang Z; Chen W; Lu Y; Nie Z Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406691 [TBL] [Abstract][Full Text] [Related]
5. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm. Reuper B; Becker M; Leinen S Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078 [TBL] [Abstract][Full Text] [Related]
6. A New DGNSS Positioning Infrastructure for Android Smartphones. Weng D; Gan X; Chen W; Ji S; Lu Y Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31952207 [TBL] [Abstract][Full Text] [Related]
7. Inherent Limitations of Smartphone GNSS Positioning and Effective Methods to Increase the Accuracy Utilizing Dual-Frequency Measurements. Yun J; Lim C; Park B Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560245 [TBL] [Abstract][Full Text] [Related]
8. The Impact of Satellite Time Group Delay and Inter-Frequency Differential Code Bias Corrections on Multi-GNSS Combined Positioning. Ge Y; Zhou F; Sun B; Wang S; Shi B Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28300787 [TBL] [Abstract][Full Text] [Related]
9. Precise Point Positioning Using World's First Dual-Frequency GPS/GALILEO Smartphone. Elmezayen A; El-Rabbany A Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174413 [TBL] [Abstract][Full Text] [Related]
10. Modeling DGNSS Pseudo-Range Correction Messages by Utilizing Satellite Repeat Time. Sohn DH; Park KD; Tae H Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28398247 [TBL] [Abstract][Full Text] [Related]
11. Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance. Jiao G; Song S; Ge Y; Su K; Liu Y Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159245 [TBL] [Abstract][Full Text] [Related]
12. Performance Limits of GNSS Code-based Precise Positioning: GPS, Galileo & Meta-Signals. Das P; Ortega L; Vilà-Valls J; Vincent F; Chaumette E; Davain L Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295045 [TBL] [Abstract][Full Text] [Related]
13. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Ren X; Zhang X; Xie W; Zhang K; Yuan Y; Li X Sci Rep; 2016 Sep; 6():33499. PubMed ID: 27629988 [TBL] [Abstract][Full Text] [Related]
14. Precise Point Positioning Using Triple GNSS Constellations in Various Modes. Afifi A; El-Rabbany A Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376 [TBL] [Abstract][Full Text] [Related]