These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 3302051)
1. Enzymatic activation of the Bacillus sphaericus mosquito larvicidal toxin. Davidson EW; Bieber AL; Meyer M; Shellabarger C J Invertebr Pathol; 1987 Jul; 50(1):40-4. PubMed ID: 3302051 [No Abstract] [Full Text] [Related]
2. Role of the gut proteinases from mosquito larvae in the mechanism of action and the specificity of the Bacillus sphaericus toxin. Nicolas L; Lecroisey A; Charles JF Can J Microbiol; 1990 Nov; 36(11):804-7. PubMed ID: 1980629 [TBL] [Abstract][Full Text] [Related]
3. Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins. Berry C; Hindley J; Ehrhardt AF; Grounds T; de Souza I; Davidson EW J Bacteriol; 1993 Jan; 175(2):510-8. PubMed ID: 8419297 [TBL] [Abstract][Full Text] [Related]
4. Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin. Broadwell AH; Baumann P Appl Environ Microbiol; 1987 Jun; 53(6):1333-7. PubMed ID: 2886104 [TBL] [Abstract][Full Text] [Related]
5. Ultrastructural effects of the Bacillus sphaericus mosquito larvicidal toxin on cultured mosquito cells. Davidson EW; Titus M J Invertebr Pathol; 1987 Nov; 50(3):213-20. PubMed ID: 3693941 [No Abstract] [Full Text] [Related]
6. Interaction of Lysinibacillus sphaericus Cry48Aa/Cry49Aa toxin with midgut brush-border membrane fractions from Culex quinquefasciatus larvae. Guo QY; Hu XM; Cai QX; Yan JP; Yuan ZM Insect Mol Biol; 2016 Apr; 25(2):163-70. PubMed ID: 26748768 [TBL] [Abstract][Full Text] [Related]
7. Effect of inorganic salts, soaps and detergents on dissolution and larvicidal activity of alginate formulation of Bacillus sphaericus. Vijayan V; Balaraman K Southeast Asian J Trop Med Public Health; 1995 Mar; 26(1):183-7. PubMed ID: 8525410 [TBL] [Abstract][Full Text] [Related]
8. [The synergism between Mtx1 from Bacillus sphaericus and Cyt1 Aa from Bacillus thuringiensis to Culex quinquefasciatus]. Yang YK; Cai QX; Cai YJ; Yan JP; Yuan ZM Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):456-60. PubMed ID: 17672305 [TBL] [Abstract][Full Text] [Related]
9. Purification of the larvicidal toxin of Bacillus sphaericus and evidence for high-molecular-weight precursors. Baumann P; Unterman BM; Baumann L; Broadwell AH; Abbene SJ; Bowditch RD J Bacteriol; 1985 Aug; 163(2):738-47. PubMed ID: 3926751 [TBL] [Abstract][Full Text] [Related]
10. Comparative studies of the mosquito-larval toxin of Bacillus sphaericus SSII-1 and 1593. Myers P; Yousten AA; Davidson EW Can J Microbiol; 1979 Nov; 25(11):1227-31. PubMed ID: 540250 [TBL] [Abstract][Full Text] [Related]
11. Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B. sphaericus 1593M. Poopathi S; Mani TR; Rao DR; Baskaran G; Kabilan L Southeast Asian J Trop Med Public Health; 1999 Sep; 30(3):477-81. PubMed ID: 10774654 [TBL] [Abstract][Full Text] [Related]
12. Stability, oviposition attraction, and larvicidal activity of binary toxin from Bacillus sphaericus expressed in Escherichia coli. da Silva Pinto L; Gonçales RA; Conceição FR; Knabah PF; Borsuk S; Campos VF; Arruda FV; Leite FP Appl Microbiol Biotechnol; 2012 Sep; 95(5):1235-41. PubMed ID: 22202967 [TBL] [Abstract][Full Text] [Related]
13. The C-terminal domain of BinA is responsible for Bacillus sphaericus binary toxin BinA-BinB interaction. Limpanawat S; Promdonkoy B; Boonserm P Curr Microbiol; 2009 Nov; 59(5):509-13. PubMed ID: 19680722 [TBL] [Abstract][Full Text] [Related]
14. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. Dadd RH J Insect Physiol; 1975 Nov; 21(11):1847-53. PubMed ID: 241769 [No Abstract] [Full Text] [Related]
16. Identification of the functional site in the mosquito larvicidal binary toxin of Bacillus sphaericus 1593M by site-directed mutagenesis. Elangovan G; Shanmugavelu M; Rajamohan F; Dean DH; Jayaraman K Biochem Biophys Res Commun; 2000 Oct; 276(3):1048-55. PubMed ID: 11027588 [TBL] [Abstract][Full Text] [Related]
17. Synergistic Activity Between S-Layer Protein and Spore-Crystal Preparations from Lysinibacillus sphaericus Against Culex quinquefasciatus Larvae. Lozano LC; Dussán J Curr Microbiol; 2017 Mar; 74(3):371-376. PubMed ID: 28168605 [TBL] [Abstract][Full Text] [Related]
18. Evolution of resistance to the Bacillus sphaericus Bin toxin is phenotypically masked by combination with the mosquitocidal proteins of Bacillus thuringiensis subspecies israelensis. Wirth MC; Walton WE; Federici BA Environ Microbiol; 2010 May; 12(5):1154-60. PubMed ID: 20141526 [TBL] [Abstract][Full Text] [Related]
19. Larvicidal efficacy of various formulations of Bacillus sphaericus against the resistant strain of Culex quinquefasciatus (Diptera: Culicidae) from southern India. Subbiah P; Ramesh N; Sundaravadivelu K; Samuel P; Tyagi BK Trop Biomed; 2009 Apr; 26(1):23-9. PubMed ID: 19696724 [TBL] [Abstract][Full Text] [Related]
20. Binding of the 51- and 42-kDa individual components from the Bacillus sphaericus crystal toxin to mosquito larval midgut membranes from Culex and Anopheles sp. (Diptera: Culicidae). Charles JF; Silva-Filha MH; Nielsen-LeRoux C; Humphreys MJ; Berry C FEMS Microbiol Lett; 1997 Nov; 156(1):153-9. PubMed ID: 9368375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]