BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 33020666)

  • 1. A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis.
    Zhou D; Jiang Y; Zhong X; Cox NJ; Liu C; Gamazon ER
    Nat Genet; 2020 Nov; 52(11):1239-1246. PubMed ID: 33020666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-trait transcriptome-wide association studies with probabilistic Mendelian randomization.
    Liu L; Zeng P; Xue F; Yuan Z; Zhou X
    Am J Hum Genet; 2021 Feb; 108(2):240-256. PubMed ID: 33434493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits.
    Nagpal S; Meng X; Epstein MP; Tsoi LC; Patrick M; Gibson G; De Jager PL; Bennett DA; Wingo AP; Wingo TS; Yang J
    Am J Hum Genet; 2019 Aug; 105(2):258-266. PubMed ID: 31230719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing and controlling for horizontal pleiotropy with probabilistic Mendelian randomization in transcriptome-wide association studies.
    Yuan Z; Zhu H; Zeng P; Yang S; Sun S; Yang C; Liu J; Zhou X
    Nat Commun; 2020 Jul; 11(1):3861. PubMed ID: 32737316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hierarchical Approach Using Marginal Summary Statistics for Multiple Intermediates in a Mendelian Randomization or Transcriptome Analysis.
    Jiang L; Xu S; Mancuso N; Newcombe PJ; Conti DV
    Am J Epidemiol; 2021 Jun; 190(6):1148-1158. PubMed ID: 33404048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-imputation of transcriptome from genotypes across multiple datasets by leveraging publicly available summary-level data.
    Liu AE; Kang HM
    PLoS Genet; 2022 Jan; 18(1):e1009571. PubMed ID: 35100255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model checking via testing for direct effects in Mendelian Randomization and transcriptome-wide association studies.
    Deng Y; Pan W
    PLoS Comput Biol; 2021 Aug; 17(8):e1009266. PubMed ID: 34339418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mendelian randomization while jointly modeling cis genetics identifies causal relationships between gene expression and lipids.
    van der Graaf A; Claringbould A; Rimbert A; ; Westra HJ; Li Y; Wijmenga C; Sanna S
    Nat Commun; 2020 Oct; 11(1):4930. PubMed ID: 33004804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A robust two-sample transcriptome-wide Mendelian randomization method integrating GWAS with multi-tissue eQTL summary statistics.
    Gleason KJ; Yang F; Chen LS
    Genet Epidemiol; 2021 Jun; 45(4):353-371. PubMed ID: 33834509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mendelian randomization under the omnigenic architecture.
    Wang L; Gao B; Fan Y; Xue F; Zhou X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34379090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A transcriptome-wide Mendelian randomization study to uncover tissue-dependent regulatory mechanisms across the human phenome.
    Richardson TG; Hemani G; Gaunt TR; Relton CL; Davey Smith G
    Nat Commun; 2020 Jan; 11(1):185. PubMed ID: 31924771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of highly reliable risk genes for Alzheimer's disease through joint-tissue integrative analysis.
    Wang YH; Luo PP; Geng AY; Li X; Liu TH; He YJ; Huang L; Tang YQ
    Front Aging Neurosci; 2023; 15():1183119. PubMed ID: 37416324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian weighted Mendelian randomization for causal inference based on summary statistics.
    Zhao J; Ming J; Hu X; Chen G; Liu J; Yang C
    Bioinformatics; 2020 Mar; 36(5):1501-1508. PubMed ID: 31593215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic.
    Bowden J; Del Greco M F; Minelli C; Davey Smith G; Sheehan NA; Thompson JR
    Int J Epidemiol; 2016 Dec; 45(6):1961-1974. PubMed ID: 27616674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphical analysis for phenome-wide causal discovery in genotyped population-scale biobanks.
    Amar D; Sinnott-Armstrong N; Ashley EA; Rivas MA
    Nat Commun; 2021 Jan; 12(1):350. PubMed ID: 33441555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orienting the causal relationship between imprecisely measured traits using GWAS summary data.
    Hemani G; Tilling K; Davey Smith G
    PLoS Genet; 2017 Nov; 13(11):e1007081. PubMed ID: 29149188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparison Study of Fixed and Mixed Effect Models for Gene Level Association Studies of Complex Traits.
    Fan R; Chiu CY; Jung J; Weeks DE; Wilson AF; Bailey-Wilson JE; Amos CI; Chen Z; Mills JL; Xiong M
    Genet Epidemiol; 2016 Dec; 40(8):702-721. PubMed ID: 27374056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting and correcting for bias in Mendelian randomization analyses using Gene-by-Environment interactions.
    Spiller W; Slichter D; Bowden J; Davey Smith G
    Int J Epidemiol; 2019 Jun; 48(3):702-712. PubMed ID: 30462199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian network-based Mendelian randomization for variant prioritization and phenotypic causal inference.
    Sun J; Zhou J; Gong Y; Pang C; Ma Y; Zhao J; Yu Z; Zhang Y
    Hum Genet; 2024 Feb; ():. PubMed ID: 38381161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner's perspective.
    Ong JS; MacGregor S
    Genet Epidemiol; 2019 Sep; 43(6):609-616. PubMed ID: 31045282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.