These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33020935)

  • 1. Variation in Photosynthetic Performance Relative to Thallus Microhabitat Heterogeneity in Lithothamnion australe (Rhodophyta, Corallinales) Rhodoliths.
    Kim JH; Steller DL; Edwards MS
    J Phycol; 2021 Feb; 57(1):234-244. PubMed ID: 33020935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification.
    Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL
    BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean.
    Cavalcanti GS; Gregoracci GB; dos Santos EO; Silveira CB; Meirelles PM; Longo L; Gotoh K; Nakamura S; Iida T; Sawabe T; Rezende CE; Francini-Filho RB; Moura RL; Amado-Filho GM; Thompson FL
    ISME J; 2014 Jan; 8(1):52-62. PubMed ID: 23985749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow rhodoliths increase Svalbard's shelf biodiversity.
    Teichert S
    Sci Rep; 2014 Nov; 4():6972. PubMed ID: 25382656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodolith primary and carbonate production in a changing ocean: The interplay of warming and nutrients.
    Schubert N; Salazar VW; Rich WA; Vivanco Bercovich M; Almeida Saá AC; Fadigas SD; Silva J; Horta PA
    Sci Total Environ; 2019 Aug; 676():455-468. PubMed ID: 31048175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of rhodolith beds and their functional biodiversity characterisation using ROV images in the western Mediterranean Sea.
    Illa-López L; Cabrito A; de Juan S; Maynou F; Demestre M
    Sci Total Environ; 2023 Dec; 905():167270. PubMed ID: 37741380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth Resilience of Subarctic Rhodoliths (Lithothamnion glaciale, Rhodophyta) to Chronic Low Sea Temperature and irradiance.
    Arnold CL; Bélanger D; Gagnon P
    J Phycol; 2022 Apr; 58(2):251-266. PubMed ID: 34902157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved rhodolith microbiomes across environmental gradients of the Great Amazon Reef.
    Calegario G; Freitas L; Appolinario LR; Venas T; Arruda T; Otsuki K; Masi B; Omachi C; Moreira AP; Soares AC; Rezende CE; Garcia G; Tschoeke D; Thompson C; Thompson FL
    Sci Total Environ; 2021 Mar; 760():143411. PubMed ID: 33243513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodolith density influences sedimentary organic matter quantity and biochemical composition, and nematode diversity.
    Martins Neto J; Bernardino AF; Netto SA
    Mar Environ Res; 2021 Oct; 171():105470. PubMed ID: 34492367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic Life Inhabits Rhodolith-forming Coralline Algae (Hapalidiales, Rhodophyta), Remarkable Marine Benthic Microhabitats.
    Krayesky-Self S; Schmidt WE; Phung D; Henry C; Sauvage T; Camacho O; Felgenhauer BE; Fredericq S
    Sci Rep; 2017 Apr; 7():45850. PubMed ID: 28368049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta).
    Schoenrock KM; Bacquet M; Pearce D; Rea BR; Schofield JE; Lea J; Mair D; Kamenos N
    J Phycol; 2018 Oct; 54(5):690-702. PubMed ID: 30079466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling privacy: advances in microtomography of coralline algae.
    Torrano-Silva BN; Ferreira SG; Oliveira MC
    Micron; 2015 May; 72():34-8. PubMed ID: 25777060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiology of maerl algae: Comparison of inter- and intraspecies variations.
    Qui-Minet ZN; Davoult D; Grall J; Delaunay C; Six C; Cariou T; Martin S
    J Phycol; 2021 Jun; 57(3):831-848. PubMed ID: 33316844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of rhodolith beds-related backscatter facies from the western Pontine Archipelago (Mediterranean Sea).
    Sañé E; Ingrassia M; Chiocci FL; Argenti L; Martorelli E
    Mar Environ Res; 2021 Jul; 169():105339. PubMed ID: 33932846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying maerl (rhodolith) habitat complexity along an environmental gradient at regional scale in the Northeast Atlantic.
    Jardim VL; Gauthier O; Toumi C; Grall J
    Mar Environ Res; 2022 Nov; 181():105768. PubMed ID: 36240648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and Characterization of Deep Rhodolith Beds off the Campania coast (SW Italy, Mediterranean Sea).
    Rendina F; Kaleb S; Caragnano A; Ferrigno F; Appolloni L; Donnarumma L; Russo GF; Sandulli R; Roviello V; Falace A
    Plants (Basel); 2020 Aug; 9(8):. PubMed ID: 32759681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagenetic history of lower Pliocene rhodoliths of the Azores Archipelago (NE Atlantic): Application of cathodoluminescence techniques.
    Rebelo AC; Meireles RP; Barbin V; Neto AI; Melo C; Ávila SP
    Micron; 2016 Jan; 80():112-21. PubMed ID: 26520255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ decrease in rhodolith growth associated with Arctic climate change.
    Teichert S; Reddin CJ; Wisshak M
    Glob Chang Biol; 2024 May; 30(5):e17300. PubMed ID: 38738563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient carbon recycling between calcification and photosynthesis in red coralline algae.
    Mao J; Burdett HL; Kamenos NA
    Biol Lett; 2024 Jun; 20(6):20230598. PubMed ID: 38889774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.
    de Carvalho RT; Salgado LT; Amado Filho GM; Leal RN; Werckmann J; Rossi AL; Campos APC; Karez CS; Farina M
    J Phycol; 2017 Jun; 53(3):642-651. PubMed ID: 28258584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.