BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1510 related articles for article (PubMed ID: 33020942)

  • 1. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-learning-based direct synthesis of low-energy virtual monoenergetic images with multi-energy CT.
    Gong H; Marsh JF; D'Souza KN; Huber NR; Rajendran K; Fletcher JG; McCollough CH; Leng S
    J Med Imaging (Bellingham); 2021 Sep; 8(5):052104. PubMed ID: 33889658
    [No Abstract]   [Full Text] [Related]  

  • 3. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based virtual noncalcium imaging in multiple myeloma using dual-energy CT.
    Gong H; Baffour FI; Glazebrook KN; Rhodes NG; Tiegs-Heiden CA; Thorne JE; Cook JM; Kumar S; Fletcher JG; McCollough CH; Leng S
    Med Phys; 2022 Oct; 49(10):6346-6358. PubMed ID: 35983992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pie-Net: Prior-information-enabled deep learning noise reduction for coronary CT angiography acquired with a photon counting detector CT.
    Chang S; Huber NR; Marsh JF; Koons EK; Gong H; Yu L; McCollough CH; Leng S
    Med Phys; 2023 Oct; 50(10):6283-6295. PubMed ID: 37042049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal artifact reduction and tumor detection using photon-counting multi-energy computed tomography.
    Lee CL; Park J; Nam S; Choi J; Choi Y; Lee S; Lee KY; Cho M
    PLoS One; 2021; 16(3):e0247355. PubMed ID: 33667250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-integrating-detector multi-energy CT: Implementation and a phantom study.
    Ren L; Allmendinger T; Halaweish A; Schmidt B; Flohr T; McCollough CH; Yu L
    Med Phys; 2021 Sep; 48(9):4857-4871. PubMed ID: 33988849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-energy head cone-beam CT using a dual-layer flat-panel detector: Hybrid material decomposition and a feasibility study.
    Wang Z; Zhou H; Gu S; Xia Y; Liao H; Deng Y; Gao H
    Med Phys; 2023 Nov; 50(11):6762-6778. PubMed ID: 37675888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
    Gong H; Ren L; Hsieh SS; McCollough CH; Yu L
    Med Phys; 2021 Oct; 48(10):5712-5726. PubMed ID: 34415068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-energy CT material decomposition using Bayesian deep convolutional neural network with explicit penalty of uncertainty and bias.
    Gong H; Leng S; Baffour F; Yu L; Fletcher JG; McCollough CH
    Proc SPIE Int Soc Opt Eng; 2023 Feb; 12463():. PubMed ID: 37063491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIRECT-Net: A unified mutual-domain material decomposition network for quantitative dual-energy CT imaging.
    Su T; Sun X; Yang J; Mi D; Zhang Y; Wu H; Fang S; Chen Y; Zheng H; Liang D; Ge Y
    Med Phys; 2022 Feb; 49(2):917-934. PubMed ID: 34935146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material decomposition from photon-counting CT using a convolutional neural network and energy-integrating CT training labels.
    Nadkarni R; Allphin A; Clark DP; Badea CT
    Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35767986
    [No Abstract]   [Full Text] [Related]  

  • 15. An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT.
    Li Z; Long Y; Chun IY
    Med Phys; 2023 Apr; 50(4):2195-2211. PubMed ID: 35735056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing CT metal artifacts using photon-counting detectors and one-step spectral CT image reconstruction.
    Schmidt TG; Sammut BA; Barber RF; Pan X; Sidky EY
    Med Phys; 2022 May; 49(5):3021-3040. PubMed ID: 35318699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Head and neck synthetic CT generated from ultra-low-dose cone-beam CT following Image Gently Protocol using deep neural network.
    Yuan N; Rao S; Chen Q; Sensoy L; Qi J; Rong Y
    Med Phys; 2022 May; 49(5):3263-3277. PubMed ID: 35229904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locally linear transform based three-dimensional gradient
    Wang Q; Wu W; Deng S; Zhu Y; Yu H
    Med Phys; 2020 Oct; 47(10):4810-4826. PubMed ID: 32740956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material decomposition with prior knowledge aware iterative denoising (MD-PKAID).
    Tao S; Rajendran K; McCollough CH; Leng S
    Phys Med Biol; 2018 Sep; 63(19):195003. PubMed ID: 30136655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 76.