These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33021005)

  • 1. Magnetic-Field-Driven Extraction of Bioreceptors into Polymeric Membranes for Label-Free Potentiometric Biosensing.
    Lv E; Li Y; Ding J; Qin W
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2609-2613. PubMed ID: 33021005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning-Enhanced Potentiometric Aptasensing with Magneto-Controlled Sensors.
    Mou J; Ding J; Qin W
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202210513. PubMed ID: 36404278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronopotentiometric sensors for antimicrobial peptide-based biosensing of Staphylococcus aureus.
    Zhao J; Ding J; Luan F; Qin W
    Mikrochim Acta; 2024 May; 191(6):356. PubMed ID: 38811412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric membrane neutral phenol-sensitive electrodes for potentiometric G-quadruplex/hemin DNAzyme-based biosensing.
    Wang X; Ding Z; Ren Q; Qin W
    Anal Chem; 2013 Feb; 85(3):1945-50. PubMed ID: 23289675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current-driven ion fluxes of polymeric membrane ion-selective electrode for potentiometric biosensing.
    Ding J; Qin W
    J Am Chem Soc; 2009 Oct; 131(41):14640-1. PubMed ID: 19785410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peptide-Driven Assembly of Magnetic Beads for Potentiometric Sensing of Bacterial Enzyme at a Subcellular Level.
    Zhang H; Mou J; Ding J; Qin W
    ACS Sens; 2024 Sep; 9(9):4947-4955. PubMed ID: 39180154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection.
    Silva NFD; Magalhães JMCS; Barroso MF; Oliva-Teles T; Freire C; Delerue-Matos C
    Talanta; 2019 Mar; 194():134-142. PubMed ID: 30609512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactive intermediates-induced potential responses of a polymeric membrane electrode for ultrasensitive potentiometric biosensing.
    Wang X; Qin W
    Chem Commun (Camb); 2012 Apr; 48(34):4073-5. PubMed ID: 22430082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiometric Detection of Listeria monocytogenes via a Short Antimicrobial Peptide Pair-Based Sandwich Assay.
    Lv E; Ding J; Qin W
    Anal Chem; 2018 Nov; 90(22):13600-13606. PubMed ID: 30335975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiometric Aptasensing of Vibrio alginolyticus Based on DNA Nanostructure-Modified Magnetic Beads.
    Zhao G; Ding J; Yu H; Yin T; Qin W
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiometric determination of trypsin using a polymeric membrane polycation-sensitive electrode based on current-controlled reagent delivery.
    Chen Y; Ding J; Qin W
    Bioelectrochemistry; 2012 Dec; 88():144-7. PubMed ID: 22537921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species.
    Liang R; Ding J; Gao S; Qin W
    Angew Chem Int Ed Engl; 2017 Jun; 56(24):6833-6837. PubMed ID: 28485518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free and substrate-free potentiometric aptasensing using polycation-sensitive membrane electrodes.
    Ding J; Chen Y; Wang X; Qin W
    Anal Chem; 2012 Feb; 84(4):2055-61. PubMed ID: 22263631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polymeric liquid membrane electrode responsive to 3,3',5,5'-tetramethylbenzidine oxidation for sensitive peroxidase/peroxidase mimetic-based potentiometric biosensing.
    Wang X; Yang Y; Li L; Sun M; Yin H; Qin W
    Anal Chem; 2014 May; 86(9):4416-22. PubMed ID: 24708044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modern Potentiometric Biosensing Based on Non-Equilibrium Measurement Techniques.
    Mou J; Ding J; Qin W
    Chemistry; 2023 Dec; 29(72):e202302647. PubMed ID: 37733874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.
    Moreira FT; Dutra RA; Noronha JP; Sales MG
    Biosens Bioelectron; 2011 Aug; 26(12):4760-6. PubMed ID: 21683568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA Nanostructure-Based Magnetic Beads for Potentiometric Aptasensing.
    Ding J; Gu Y; Li F; Zhang H; Qin W
    Anal Chem; 2015 Jul; 87(13):6465-9. PubMed ID: 26044085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode.
    Ding J; Qin W
    Biosens Bioelectron; 2013 Sep; 47():559-65. PubMed ID: 23665129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticizer-free polymer containing a covalently immobilized Ca2+-selective ionophore for potentiometric and optical sensors.
    Qin Y; Peper S; Radu A; Ceresa A; Bakker E
    Anal Chem; 2003 Jul; 75(13):3038-45. PubMed ID: 12964748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potentiometric protein sensor built with surface molecular imprinting method.
    Wang Y; Zhou Y; Sokolov J; Rigas B; Levon K; Rafailovich M
    Biosens Bioelectron; 2008 Sep; 24(1):162-6. PubMed ID: 18514502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.