These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33021287)

  • 21. Thermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
    Hong Y; Zhang J; Huang X; Zeng XC
    Nanoscale; 2015 Nov; 7(44):18716-24. PubMed ID: 26502794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhigh out-of-plane piezoelectricity, low thermal conductivity and photocatalytic abilities in ultrathin 2D van der Waals heterostructures of boron monophosphide and gallium nitride.
    Mohanta MK; Rawat A; Dimple ; Jena N; Ahammed R; De Sarkar A
    Nanoscale; 2019 Nov; 11(45):21880-21890. PubMed ID: 31697290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride.
    Gao Y; Zhang X; Jing Y; Hu M
    Nanoscale; 2015 Apr; 7(16):7143-50. PubMed ID: 25811773
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon-nitride 2D nanostructures: thermal conductivity and interfacial thermal conductance with the silica substrate.
    Rajabpour A; Bazrafshan S; Volz S
    Phys Chem Chem Phys; 2019 Jan; 21(5):2507-2512. PubMed ID: 30656341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet.
    Hong Y; Zhang J; Zeng XC
    Phys Chem Chem Phys; 2016 Sep; 18(35):24164-70. PubMed ID: 27531348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Anisotropic Thermal Conductivity of Layer-by-Layer Assembled Nanofibrillated Cellulose/Graphene Nanosheets Hybrid Films for Thermal Management.
    Song N; Jiao D; Cui S; Hou X; Ding P; Shi L
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2924-2932. PubMed ID: 28045485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes.
    Zha XH; Zhou J; Zhou Y; Huang Q; He J; Francisco JS; Luo K; Du S
    Nanoscale; 2016 Mar; 8(11):6110-7. PubMed ID: 26932122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic effect of reduced graphene oxide/carbon nanotube hybrid papers on cross-plane thermal and mechanical properties.
    Yang Y; Shen H; Yang J; Gao K; Wang Z; Sun L
    RSC Adv; 2022 Jun; 12(30):19144-19153. PubMed ID: 35865578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study.
    Raeisi M; Ahmadi S; Rajabpour A
    Nanoscale; 2019 Nov; 11(45):21799-21810. PubMed ID: 31691704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulation on Mechanical and Piezoelectric Properties of Boron Nitride Honeycomb Structures.
    Xie L; Wang T; He C; Sun Z; Peng Q
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31330928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite.
    Jang W; Chen Z; Bao W; Lau CN; Dames C
    Nano Lett; 2010 Oct; 10(10):3909-13. PubMed ID: 20836537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal Conductivity of Two Types of 2D Carbon Allotropes: a Molecular Dynamics Study.
    Li S; Ren H; Zhang Y; Xie X; Cai K; Li C; Wei N
    Nanoscale Res Lett; 2019 Jan; 14(1):7. PubMed ID: 30618012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of temperature and intrinsic structural defects on mechanical properties and thermal conductivities of InSe monolayers.
    Pham VT; Fang TH
    Sci Rep; 2020 Sep; 10(1):15082. PubMed ID: 32934331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Composite Polymeric Carbon Nitride with In Situ Formed Isotype Heterojunctions for Highly Improved Photocatalysis under Visible Light.
    Liang Q; Li Z; Bai Y; Huang ZH; Kang F; Yang QH
    Small; 2017 Mar; 13(9):. PubMed ID: 27936314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic Thermal Conductivity of Crystalline Layered SnSe
    Xiao P; Chavez-Angel E; Chaitoglou S; Sledzinska M; Dimoulas A; Sotomayor Torres CM; El Sachat A
    Nano Lett; 2021 Nov; 21(21):9172-9179. PubMed ID: 34710326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride.
    Jo I; Pettes MT; Kim J; Watanabe K; Taniguchi T; Yao Z; Shi L
    Nano Lett; 2013 Feb; 13(2):550-4. PubMed ID: 23346863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropic temperature-dependent thermal conductivity by an Al
    Lee WY; Lee JH; Ahn JY; Park TH; Park NW; Kim GS; Park JS; Lee SK
    Nanotechnology; 2017 Mar; 28(10):105401. PubMed ID: 28145279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flexible Graphene Nanocomposites with Simultaneous Highly Anisotropic Thermal and Electrical Conductivities Prepared by Engineered Graphene with Flat Morphology.
    Zhuang Y; Zheng K; Cao X; Fan Q; Ye G; Lu J; Zhang J; Ma Y
    ACS Nano; 2020 Sep; 14(9):11733-11742. PubMed ID: 32865991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal transport properties of monolayer MoSe
    Ma JJ; Zheng JJ; Li WD; Wang DH; Wang BT
    Phys Chem Chem Phys; 2020 Mar; 22(10):5832-5838. PubMed ID: 32107519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.