BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 330220)

  • 21. Zinc(II)-dependent synthesis of diadenosine 5', 5"' -P(1) ,P(4) -tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases.
    Plateau P; Mayaux JF; Blanquet S
    Biochemistry; 1981 Aug; 20(16):4654-62. PubMed ID: 7028092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the metal.nucleotide complex in the yeast phenylalanyl transfer ribonucleic acid synthetase reaction as determined with diastereomeric phosphorothioate analogs of ATP.
    Connolly BA; Von der Haar F; Eckstein F
    J Biol Chem; 1980 Dec; 255(23):11301-7. PubMed ID: 7002919
    [No Abstract]   [Full Text] [Related]  

  • 23. Fluorimetric study of the complex between yeast phenylalanyl-tRNA synthetase and tRNA-Phe. 1. Changes in the conformation of the enzyme and tRNA; modification of the Wybutine neighbourhood.
    Ehrlich R; Lefevre JF; Remy P
    Eur J Biochem; 1980 Jan; 103(1):145-53. PubMed ID: 6987055
    [No Abstract]   [Full Text] [Related]  

  • 24. Interaction of aminoacyl-tRNA synthetases and tRNA: positive and negative cooperativity of their active centres.
    Malygin EG; Zinoviev VV; Fasiolo F; Kisselev LL; Kochkina LL; Achverdyan VZ
    Mol Biol Rep; 1976 Jul; 2(6):445-54. PubMed ID: 183101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of excision of the Y-base on the interaction of tRNAPhe (yeast) with phenylalanyl-tRNA synthetase (yeast).
    Krauss G; Peters F; Maass G
    Nucleic Acids Res; 1976 Mar; 3(3):631-9. PubMed ID: 5707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic mechanism of the [32P] ATP-PPi exchange reaction catalysed by yeast phenylalanyl-tRNA synthetase.
    Kisselev LL; Fasiolog F
    FEBS Lett; 1975 Nov; 59(2):254-7. PubMed ID: 776664
    [No Abstract]   [Full Text] [Related]  

  • 27. Charging of a yeast methionine tRNA with phenylalanine and its implication for the synthetase recognition problem.
    Feldmann H; Zachau HG
    Hoppe Seylers Z Physiol Chem; 1977 Jul; 358(7):891-6. PubMed ID: 330376
    [No Abstract]   [Full Text] [Related]  

  • 28. Phenylalanyl-tRNA and seryl-tRNA synthetases from baker's yeast. Substrate specificity with regard to ATP analogs and mechanism of the aminoacylation reaction.
    Freist W; von der Haar F; Sprinzl M; Cramer F
    Eur J Biochem; 1976 May; 64(2):389-93. PubMed ID: 776617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic mechanism of phenylalanyl-tRNA synthetase of Escherichia coli K10. Different properties of native and photochemically cross-linked tRNAPhe can be explained in the light of tRNA conformer equilibria.
    Holler E; Baltzinger M; Favre A
    Biochemistry; 1981 Mar; 20(5):1139-47. PubMed ID: 7013785
    [No Abstract]   [Full Text] [Related]  

  • 30. Induced hydrolytic activity of yeast phenylalanyl-tRNA synthetase by tRNAPhe-CC.
    Kuhn W; Schneider FW
    Nucleic Acids Res; 1982 Apr; 10(7):2439-51. PubMed ID: 7045811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A test for the active intermediate in the aminoacylation of tRNAPhe from yeast.
    Thiebe R; Hirsch R
    FEBS Lett; 1975 Dec; 60(2):338-41. PubMed ID: 776679
    [No Abstract]   [Full Text] [Related]  

  • 32. Yeast phenylalanyl-tRNA synthetase. Properties of the histidyl residues.
    Raffin JP; Remy P
    Biochim Biophys Acta; 1978 Aug; 520(1):164-74. PubMed ID: 359050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenylalanyl-tRNA synthetase from baker's yeast. Salt dependence of steady-state kinetics indicates two molecular forms of the enzyme.
    von der Haar F
    Eur J Biochem; 1976 May; 64(2):395-8. PubMed ID: 776618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanism of activation of phenylalanine and synthesis of P1, P4-bis(5'-adenosyl) tetraphosphate by yeast phenylalanyl-tRNA synthetase.
    Harnett SP; Lowe G; Tansley G
    Biochemistry; 1985 Jun; 24(12):2908-15. PubMed ID: 3893531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative study of the ionic interactions between yeast tRNA-Val and tRNA-Phe and their cognate aminoacyl-tRNA ligases.
    Bonnet J; Renaud M; Raffin JP; Remy P
    FEBS Lett; 1975 May; 53(2):154-8. PubMed ID: 1095410
    [No Abstract]   [Full Text] [Related]  

  • 36. Aminoacyl adenylate, a normal intermediate or a dead end in aminoacylation of transfer ribonucleic acid.
    Lagerkvist U; Akesson B; Brändén R
    J Biol Chem; 1977 Feb; 252(3):1002-6. PubMed ID: 320199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-equivalence of the sites of yeast phenylalanyl-tRNA synthetase during catalysis.
    Fasiolo F; Ebel JP; Lazdunski M
    Eur J Biochem; 1977 Feb; 73(1):7-15. PubMed ID: 320009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast kinetic study of yeast phenylalanyl-tRNA synthetase: role of tRNAPhe in the discrimination between tyrosine and phenylalanine.
    Lin SX; Baltzinger M; Remy P
    Biochemistry; 1984 Aug; 23(18):4109-16. PubMed ID: 6386044
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenylalanyl-tRNA, lysyl-tRNA, isoleucyl-tRNA and arginyl-tRNA synthetases. Substrate specificity in the ATP/PPi exchange with regard to ATP analogs.
    Freist W; Cramer F
    Eur J Biochem; 1980; 107(1):47-50. PubMed ID: 6995115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific interaction of anticodon loop residues with yeast phenylalanyl-tRNA synthetase.
    Bruce AG; Uhlenbeck OC
    Biochemistry; 1982 Aug; 21(17):3921-6. PubMed ID: 6751381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.