These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Pore architecture effects on chondrogenic potential of patient-specific 3-dimensionally printed porous tissue bioscaffolds for auricular tissue engineering. Zopf DA; Flanagan CL; Mitsak AG; Brennan JR; Hollister SJ Int J Pediatr Otorhinolaryngol; 2018 Nov; 114():170-174. PubMed ID: 30262359 [TBL] [Abstract][Full Text] [Related]
3. Preclinical assessment of clinically streamlined, 3D-printed, biocompatible single- and two-stage tissue scaffolds for ear reconstruction. Brennan JR; Cornett A; Chang B; Crotts SJ; Nourmohammadi Z; Lombaert I; Hollister SJ; Zopf DA J Biomed Mater Res B Appl Biomater; 2021 Mar; 109(3):394-400. PubMed ID: 32830908 [TBL] [Abstract][Full Text] [Related]
4. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Zopf DA; Mitsak AG; Flanagan CL; Wheeler M; Green GE; Hollister SJ Otolaryngol Head Neck Surg; 2015 Jan; 152(1):57-62. PubMed ID: 25281749 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and characterization of 3D-printed elastic auricular scaffolds: A pilot study. Kim HY; Jung SY; Lee SJ; Lee HJ; Truong MD; Kim HS Laryngoscope; 2019 Feb; 129(2):351-357. PubMed ID: 30229920 [TBL] [Abstract][Full Text] [Related]
6. Co-culture of adipose-derived stem cells and chondrocytes on three-dimensionally printed bioscaffolds for craniofacial cartilage engineering. Morrison RJ; Nasser HB; Kashlan KN; Zopf DA; Milner DJ; Flanangan CL; Wheeler MB; Green GE; Hollister SJ Laryngoscope; 2018 Jul; 128(7):E251-E257. PubMed ID: 29668079 [TBL] [Abstract][Full Text] [Related]
7. Auricle shaping using 3D printing and autologous diced cartilage. Liao J; Chen Y; Chen J; He B; Qian L; Xu J; Wang A; Li Q; Xie H; Zhou J Laryngoscope; 2019 Nov; 129(11):2467-2474. PubMed ID: 30843613 [TBL] [Abstract][Full Text] [Related]
9. Ideal scaffold design for total ear reconstruction using a three-dimensional printing technique. Jung BK; Kim JY; Kim YS; Roh TS; Seo A; Park KH; Shim JH; Yun IS J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):1295-1303. PubMed ID: 30261122 [TBL] [Abstract][Full Text] [Related]
10. Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits. von Bomhard A; Veit J; Bermueller C; Rotter N; Staudenmaier R; Storck K; The HN PLoS One; 2013; 8(8):e71667. PubMed ID: 23951215 [TBL] [Abstract][Full Text] [Related]
11. One-Year Results of Ear Reconstruction with 3D Printed Implants. Kim M; Kim YJ; Kim YS; Roh TS; Lee EJ; Shim JH; Kang EH; Kim MJ; Yun IS Yonsei Med J; 2024 Aug; 65(8):456-462. PubMed ID: 39048321 [TBL] [Abstract][Full Text] [Related]
12. Validity and reliability of three-dimensional costal cartilage imaging for donor-site assessment and clinical application in microtia reconstruction patients: A prospective study of 22 cases. Mao X; Li X; Jia J; Kang D; Miao Y; Lu Z; Hu Z Clin Otolaryngol; 2020 Mar; 45(2):204-210. PubMed ID: 31811706 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction. Kuhlmann C; Blum JC; Schenck TL; Giunta RE; Wiggenhauser PS Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769096 [TBL] [Abstract][Full Text] [Related]
14. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. Reiffel AJ; Kafka C; Hernandez KA; Popa S; Perez JL; Zhou S; Pramanik S; Brown BN; Ryu WS; Bonassar LJ; Spector JA PLoS One; 2013; 8(2):e56506. PubMed ID: 23437148 [TBL] [Abstract][Full Text] [Related]
15. Ethanol treatment of nanoPGA/PCL composite scaffolds enhances human chondrocyte development in the cellular microenvironment of tissue-engineered auricle constructs. Hirano N; Kusuhara H; Sueyoshi Y; Teramura T; Murthy A; Asamura S; Isogai N; Jacquet RD; Landis WJ PLoS One; 2021; 16(7):e0253149. PubMed ID: 34242238 [TBL] [Abstract][Full Text] [Related]
16. Computer-Aided Design and 3D Printing to Produce a Costal Cartilage Model for Simulation of Auricular Reconstruction. Berens AM; Newman S; Bhrany AD; Murakami C; Sie KC; Zopf DA Otolaryngol Head Neck Surg; 2016 Aug; 155(2):356-9. PubMed ID: 27048671 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional autologous cartilage framework fabrication assisted by new additive manufactured ear-shaped templates for microtia reconstruction. Zhou J; Pan B; Yang Q; Zhao Y; He L; Lin L; Sun H; Song Y; Yu X; Sun Z; Jiang H J Plast Reconstr Aesthet Surg; 2016 Oct; 69(10):1436-44. PubMed ID: 27496290 [TBL] [Abstract][Full Text] [Related]
18. Human-engineered auricular reconstruction (hEAR) by 3D-printed molding with human-derived auricular and costal chondrocytes and adipose-derived mesenchymal stem cells. Landau S; Szklanny AA; Machour M; Kaplan B; Shandalov Y; Redenski I; Beckerman M; Harari-Steinberg O; Zavin J; Karni-Katovitch O; Goldfracht I; Michael I; Waldman SD; Duvdevani SI; Levenberg S Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34798628 [TBL] [Abstract][Full Text] [Related]
19. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction. Visscher DO; Gleadall A; Buskermolen JK; Burla F; Segal J; Koenderink GH; Helder MN; van Zuijlen PPM J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1711-1721. PubMed ID: 30383916 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Auricular Cartilage Reconstruction Using a 3-Dimensional Printed Biodegradable Scaffold and Autogenous Minced Auricular Cartilage. Min SH; Kim JH; Lee MI; Kwak HH; Woo HM; Shim JH; Choi DM; Lee JS; Jeong JY; Kang BJ Ann Plast Surg; 2020 Aug; 85(2):185-193. PubMed ID: 32118635 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]