These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33022175)

  • 1. Metastable Atomic Layer Deposition: 3D Self-Assembly toward Ultradark Materials.
    Ziegler M; Dathe A; Pollok K; Langenhorst F; Hübner U; Wang D; Schaaf P
    ACS Nano; 2020 Nov; 14(11):15023-15031. PubMed ID: 33022175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Black Silver: Three-Dimensional Ag Hybrid Plasmonic Nanostructures with Strong Photon Coupling for Scalable Photothermoelectric Power Generation.
    Cheng P; Ziegler M; Ripka V; Wang H; Pollok K; Langenhorst F; Wang D; Schaaf P
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16894-16900. PubMed ID: 35362322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoS
    Sun Z; Huang F; Fu Y
    Appl Opt; 2020 Aug; 59(22):6671-6676. PubMed ID: 32749370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale, Bandwidth-Adjustable, Visible Absorbers by Evaporation and Annealing Process.
    Long X; Yue W; Su Y; Chen W; Li L
    Nanoscale Res Lett; 2019 Feb; 14(1):48. PubMed ID: 30756198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disordered Nanohole Patterns in Metal-Insulator Multilayer for Ultra-broadband Light Absorption: Atomic Layer Deposition for Lithography Free Highly repeatable Large Scale Multilayer Growth.
    Ghobadi A; Hajian H; Dereshgi SA; Bozok B; Butun B; Ozbay E
    Sci Rep; 2017 Nov; 7(1):15079. PubMed ID: 29118435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Assembly of Carbon Black/AAO Templates on Nanoporous Si for Broadband Infrared Absorption.
    Li H; Wu L; Zhang H; Dai W; Hao J; Wu H; Ren F; Liu C
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):4081-4087. PubMed ID: 31875671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating.
    Yan J; Liu P; Ma C; Lin Z; Yang G
    Nanoscale; 2016 Apr; 8(16):8826-38. PubMed ID: 27067248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers.
    Anguita JV; Ahmad M; Haq S; Allam J; Silva SR
    Sci Adv; 2016 Feb; 2(2):e1501238. PubMed ID: 26933686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide-Angle Broadband Antireflection Coatings Prepared by Atomic Layer Deposition.
    Pfeiffer K; Ghazaryan L; Schulz U; Szeghalmi A
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21887-21894. PubMed ID: 31083898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-band 'black silicon' with atomic layer deposited NbN.
    Isakov K; Perros AP; Shah A; Lipsanen H
    Nanotechnology; 2018 Aug; 29(33):335303. PubMed ID: 29790853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar-to-Steam Generation via Porous Black Membranes with Tailored Pore Structures.
    Go K; Bae K; Choi H; Kim HY; Lee KJ
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48300-48308. PubMed ID: 31769647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the Conduction Band-Edge Potential of Solar-Cell-Relevant Nb
    Hoffeditz WL; Pellin MJ; Farha OK; Hupp JT
    Langmuir; 2017 Sep; 33(37):9298-9306. PubMed ID: 28499092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable nano-architecture for stable near-blackbody solar absorption at high temperatures.
    Guo Y; Tsuda K; Hosseini S; Murakami Y; Tricoli A; Coventry J; Lipiński W; Torres JF
    Nat Commun; 2024 Jan; 15(1):384. PubMed ID: 38195671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of interface roughness on the performance of broadband blackbody absorber based on dielectric-metal film multilayers.
    Guo SH; Sushkov AB; Park DH; Drew HD; Kolb PW; Herman WN; Phaneuf RJ
    Opt Express; 2014 Jan; 22(2):1952-62. PubMed ID: 24515204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of atomic layer deposition in solar cells.
    Niu W; Li X; Karuturi SK; Fam DW; Fan H; Shrestha S; Wong LH; Tok AI
    Nanotechnology; 2015 Feb; 26(6):064001. PubMed ID: 25604730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths.
    Labelle AJ; Bonifazi M; Tian Y; Wong C; Hoogland S; Favraud G; Walters G; Sutherland B; Liu M; Li J; Zhang X; Kelley SO; Sargent EH; Fratalocchi A
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5556-5565. PubMed ID: 28156089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.