BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33022256)

  • 1. Chemosynthetic symbioses.
    Sogin EM; Leisch N; Dubilier N
    Curr Biol; 2020 Oct; 30(19):R1137-R1142. PubMed ID: 33022256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life in the Dark: Phylogenetic and Physiological Diversity of Chemosynthetic Symbioses.
    Sogin EM; Kleiner M; Borowski C; Gruber-Vodicka HR; Dubilier N
    Annu Rev Microbiol; 2021 Oct; 75():695-718. PubMed ID: 34351792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves.
    Roeselers G; Newton IL
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):1-10. PubMed ID: 22354364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixotrophic chemosynthesis in a deep-sea anemone from hydrothermal vents in the Pescadero Basin, Gulf of California.
    Goffredi SK; Motooka C; Fike DA; Gusmão LC; Tilic E; Rouse GW; Rodríguez E
    BMC Biol; 2021 Jan; 19(1):8. PubMed ID: 33455582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis.
    Dubilier N; Bergin C; Lott C
    Nat Rev Microbiol; 2008 Oct; 6(10):725-40. PubMed ID: 18794911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces.
    Stewart FJ; Newton IL; Cavanaugh CM
    Trends Microbiol; 2005 Sep; 13(9):439-48. PubMed ID: 16054816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur-Oxidizing Symbionts without Canonical Genes for Autotrophic CO
    Seah BKB; Antony CP; Huettel B; Zarzycki J; Schada von Borzyskowski L; Erb TJ; Kouris A; Kleiner M; Liebeke M; Dubilier N; Gruber-Vodicka HR
    mBio; 2019 Jun; 10(3):. PubMed ID: 31239380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symbioses of methanotrophs and deep-sea mussels (Mytilidae: Bathymodiolinae).
    DeChaine EG; Cavanaugh CM
    Prog Mol Subcell Biol; 2006; 41():227-49. PubMed ID: 16623396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use.
    Kleiner M; Wentrup C; Lott C; Teeling H; Wetzel S; Young J; Chang YJ; Shah M; VerBerkmoes NC; Zarzycki J; Fuchs G; Markert S; Hempel K; Voigt B; Becher D; Liebeke M; Lalk M; Albrecht D; Hecker M; Schweder T; Dubilier N
    Proc Natl Acad Sci U S A; 2012 May; 109(19):E1173-82. PubMed ID: 22517752
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Sudo M; Osvatic J; Taylor JD; Dufour SC; Prathep A; Wilkins LGE; Rattei T; Yuen B; Petersen JM
    mSystems; 2024 Jun; 9(6):e0113523. PubMed ID: 38747602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symbioses between deep-sea mussels (Mytilidae: Bathymodiolinae) and chemosynthetic bacteria: diversity, function and evolution.
    Duperron S; Lorion J; Samadi S; Gros O; Gaill F
    C R Biol; 2009; 332(2-3):298-310. PubMed ID: 19281960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen is an energy source for hydrothermal vent symbioses.
    Petersen JM; Zielinski FU; Pape T; Seifert R; Moraru C; Amann R; Hourdez S; Girguis PR; Wankel SD; Barbe V; Pelletier E; Fink D; Borowski C; Bach W; Dubilier N
    Nature; 2011 Aug; 476(7359):176-80. PubMed ID: 21833083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of carbon monoxide and hydrogen by a bacteria-animal symbiosis from seagrass sediments.
    Kleiner M; Wentrup C; Holler T; Lavik G; Harder J; Lott C; Littmann S; Kuypers MM; Dubilier N
    Environ Microbiol; 2015 Dec; 17(12):5023-35. PubMed ID: 26013766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genome of the intracellular bacterium of the coastal bivalve, Solemya velum: a blueprint for thriving in and out of symbiosis.
    Dmytrenko O; Russell SL; Loo WT; Fontanez KM; Liao L; Roeselers G; Sharma R; Stewart FJ; Newton IL; Woyke T; Wu D; Lang JM; Eisen JA; Cavanaugh CM
    BMC Genomics; 2014 Oct; 15():924. PubMed ID: 25342549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism Interactions Promote the Overall Functioning of the Episymbiotic Chemosynthetic Community of Shinkaia crosnieri of Cold Seeps.
    Xu Z; Wang M; Zhang H; He W; Cao L; Lian C; Zhong Z; Wang H; Fu L; Zhang X; Li C
    mSystems; 2022 Aug; 7(4):e0032022. PubMed ID: 35938718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins and evolutionary flexibility of chemosynthetic symbionts from deep-sea animals.
    Petersen JM; Wentrup C; Verna C; Knittel K; Dubilier N
    Biol Bull; 2012 Aug; 223(1):123-37. PubMed ID: 22983038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis.
    Osvatic JT; Yuen B; Kunert M; Wilkins L; Hausmann B; Girguis P; Lundin K; Taylor J; Jospin G; Petersen JM
    ISME J; 2023 Mar; 17(3):453-466. PubMed ID: 36639537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome assembly of the chemosynthetic endosymbiont of the hydrothermal vent snail Alviniconcha adamantis from the Mariana Arc.
    Breusing C; Klobusnik NH; Hauer MA; Beinart RA
    G3 (Bethesda); 2022 Sep; 12(10):. PubMed ID: 35997584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.
    Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The uptake and excretion of partially oxidized sulfur expands the repertoire of energy resources metabolized by hydrothermal vent symbioses.
    Beinart RA; Gartman A; Sanders JG; Luther GW; Girguis PR
    Proc Biol Sci; 2015 May; 282(1806):20142811. PubMed ID: 25876848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.