These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33022437)

  • 1. Techno-economic assessment of various hydrogen production methods - A review.
    Yukesh Kannah R; Kavitha S; Preethi ; Parthiba Karthikeyan O; Kumar G; Dai-Viet NV; Rajesh Banu J
    Bioresour Technol; 2021 Jan; 319():124175. PubMed ID: 33022437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment.
    Crawford JT; Shan CW; Budsberg E; Morgan H; Bura R; Gustafson R
    Biotechnol Biofuels; 2016; 9():141. PubMed ID: 28616077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.
    Kumar B; Kumar S; Sinha S; Kumar S
    Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis on production of bioethanol for hydrogen generation.
    Palanisamy A; Soundarrajan N; Ramasamy G
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63690-63705. PubMed ID: 34050510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
    Budsberg E; Crawford JT; Morgan H; Chin WS; Bura R; Gustafson R
    Biotechnol Biofuels; 2016; 9():170. PubMed ID: 27525039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts.
    Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H
    J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
    Andrew R; Gokak DT; Sharma P; Gupta S
    Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.
    Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative review on clean hydrogen production from wastewaters.
    Aydin MI; Karaca AE; Qureshy AMMI; Dincer I
    J Environ Manage; 2021 Feb; 279():111793. PubMed ID: 33360275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective carbon footprint comparison of hydrogen options.
    Valente A; Iribarren D; Dufour J
    Sci Total Environ; 2020 Aug; 728():138212. PubMed ID: 32361105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic reforming of oxygenated hydrocarbons for the hydrogen production: an outlook.
    Azizan MT; Aqsha A; Ameen M; Syuhada A; Klaus H; Abidin SZ; Sher F
    Biomass Convers Biorefin; 2020 Oct; ():1-24. PubMed ID: 33110738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy.
    Sharma S; Basu S; Shetti NP; Aminabhavi TM
    Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative life cycle sustainability assessment of renewable and conventional hydrogen.
    Valente A; Iribarren D; Dufour J
    Sci Total Environ; 2021 Feb; 756():144132. PubMed ID: 33279204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biorenewable hydrogen production through biomass gasification: A review and future prospects.
    Cao L; Yu IKM; Xiong X; Tsang DCW; Zhang S; Clark JH; Hu C; Ng YH; Shang J; Ok YS
    Environ Res; 2020 Jul; 186():109547. PubMed ID: 32335432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative water footprint assessment of fuel cell electric vehicles and compressed natural gas vehicles.
    Yao D; Liu Y; Xu Z; Zhu Z; Qi J; Wang Y; Cui P
    Sci Total Environ; 2022 Jul; 830():154820. PubMed ID: 35341846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Criteria Air Pollutants and Greenhouse Gas Emissions from Hydrogen Production in U.S. Steam Methane Reforming Facilities.
    Sun P; Young B; Elgowainy A; Lu Z; Wang M; Morelli B; Hawkins T
    Environ Sci Technol; 2019 Jun; 53(12):7103-7113. PubMed ID: 31039312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up.
    Kitching M; Butler R; Marsili E
    Enzyme Microb Technol; 2017 Jan; 96():1-13. PubMed ID: 27871368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photobiohydrogen Production and Strategies for H
    Khetkorn W; Raksajit W; Maneeruttanarungroj C; Lindblad P
    Adv Biochem Eng Biotechnol; 2023; 183():253-279. PubMed ID: 37009974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.