These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33022605)

  • 1. Wireless steerable vision for live insects and insect-scale robots.
    Iyer V; Najafi A; James J; Fuller S; Gollakota S
    Sci Robot; 2020 Jul; 5(44):. PubMed ID: 33022605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic tracking of free-flying insects using a cable-driven robot.
    Pannequin R; Jouaiti M; Boutayeb M; Lucas P; Martinez D
    Sci Robot; 2020 Jun; 5(43):. PubMed ID: 33022614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing insect flight research with a lab-on-cables.
    Sane SP
    Sci Robot; 2020 Aug; 5(45):. PubMed ID: 33022634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-inspired vision based robot control using featureless estimations of time-to-contact.
    Zhang H; Zhao J
    Bioinspir Biomim; 2017 Jan; 12(2):025001. PubMed ID: 27973340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lightweight, inexpensive robotic system for insect vision.
    Sabo C; Chisholm R; Petterson A; Cope A
    Arthropod Struct Dev; 2017 Sep; 46(5):689-702. PubMed ID: 28818663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From biokinematics to a robotic active vision system.
    Barzilay O; Zelnik-Manor L; Gutfreund Y; Wagner H; Wolf A
    Bioinspir Biomim; 2017 Sep; 12(5):056004. PubMed ID: 28581436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design.
    Kajak KM; Karásek M; Chu QP; de Croon GCHE
    Bioinspir Biomim; 2019 Jun; 14(4):046008. PubMed ID: 31039555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bio-inspired flying robot sheds light on insect piloting abilities.
    Franceschini N; Ruffier F; Serres J
    Curr Biol; 2007 Feb; 17(4):329-35. PubMed ID: 17291757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imitation of Dynamic Walking With BSN for Humanoid Robot.
    Teachasrisaksakul K; Zhang ZQ; Yang GZ; Lo B
    IEEE J Biomed Health Inform; 2015 May; 19(3):794-802. PubMed ID: 25935051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extremely large sweep amplitude enables high wing loading in giant hovering insects.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2019 Sep; 14(6):066006. PubMed ID: 31434064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle.
    Yang X; Chang L; Pérez-Arancibia NO
    Sci Robot; 2020 Aug; 5(45):. PubMed ID: 33022629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled banked turns in coleopteran flight measured by a miniature wireless inertial measurement unit.
    Li Y; Cao F; Thang Vo Doan T; Sato H
    Bioinspir Biomim; 2016 Sep; 11(5):056018. PubMed ID: 27679933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback Control-Based Navigation of a Flying Insect-Machine Hybrid Robot.
    Li Y; Wu J; Sato H
    Soft Robot; 2018 Aug; 5(4):365-374. PubMed ID: 29722607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A direct optic flow-based strategy for inverse flight altitude estimation with monocular vision and IMU measurements.
    Chirarattananon P
    Bioinspir Biomim; 2018 Mar; 13(3):036004. PubMed ID: 29256435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-intestinal robot with wireless power transmission: design, analysis and experiment.
    Shi Y; Yan G; Chen W; Zhu B
    Comput Biol Med; 2015 Nov; 66():343-51. PubMed ID: 26278992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insect behaviour: controlling flight altitude with optic flow.
    Webb B
    Curr Biol; 2007 Feb; 17(4):R124-5. PubMed ID: 17307043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CYCLOPS: A mobile robotic platform for testing and validating image processing and autonomous navigation algorithms in support of artificial vision prostheses.
    Fink W; Tarbell MA
    Comput Methods Programs Biomed; 2009 Dec; 96(3):226-33. PubMed ID: 19651459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insect photoreceptor adaptations to night vision.
    Honkanen A; Immonen EV; Salmela I; Heimonen K; Weckström M
    Philos Trans R Soc Lond B Biol Sci; 2017 Apr; 372(1717):. PubMed ID: 28193821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using parallel evolutionary development for a biologically-inspired computer vision system for mobile robots.
    Wright CH; Barrett SF; Pack DJ
    Biomed Sci Instrum; 2005; 41():253-8. PubMed ID: 15850114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.