BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33022614)

  • 1. Automatic tracking of free-flying insects using a cable-driven robot.
    Pannequin R; Jouaiti M; Boutayeb M; Lucas P; Martinez D
    Sci Robot; 2020 Jun; 5(43):. PubMed ID: 33022614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing insect flight research with a lab-on-cables.
    Sane SP
    Sci Robot; 2020 Aug; 5(45):. PubMed ID: 33022634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wireless steerable vision for live insects and insect-scale robots.
    Iyer V; Najafi A; James J; Fuller S; Gollakota S
    Sci Robot; 2020 Jul; 5(44):. PubMed ID: 33022605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of a deformable wing configuration for economical hovering flight of an insect-like tailless flying robot.
    Phan HV; Park HC
    Bioinspir Biomim; 2018 Apr; 13(3):036009. PubMed ID: 29493535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High speed visual insect swarm tracker (Hi-VISTA) used to identify the effects of confinement on individual insect flight.
    Ahmed I; Faruque IA
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35439741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A direct optic flow-based strategy for inverse flight altitude estimation with monocular vision and IMU measurements.
    Chirarattananon P
    Bioinspir Biomim; 2018 Mar; 13(3):036004. PubMed ID: 29256435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational control: A hidden stabilization mechanism in insect flight.
    Taha HE; Kiani M; Hedrick TL; Greeter JSM
    Sci Robot; 2020 Sep; 5(46):. PubMed ID: 32999048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optic flow-based collision-free strategies: From insects to robots.
    Serres JR; Ruffier F
    Arthropod Struct Dev; 2017 Sep; 46(5):703-717. PubMed ID: 28655645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback Control-Based Navigation of a Flying Insect-Machine Hybrid Robot.
    Li Y; Wu J; Sato H
    Soft Robot; 2018 Aug; 5(4):365-374. PubMed ID: 29722607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive control of a millimeter-scale flapping-wing robot.
    Chirarattananon P; Ma KY; Wood RJ
    Bioinspir Biomim; 2014 Jun; 9(2):025004. PubMed ID: 24855052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Appetitive flight patterns of male Agrotis segetum moths over landscape scales.
    Reynolds AM; Reynolds DR; Smith AD; Svensson GP; Löfstedt C
    J Theor Biol; 2007 Mar; 245(1):141-9. PubMed ID: 17109897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments.
    Talley JL; White EB; Willis MA
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36354120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Codling moth males do not discriminate between pheromone and a pheromone/antagonist blend during upwind flight.
    Coracini M; Bengtsson M; Cichon L; Witzgall P
    Naturwissenschaften; 2003 Sep; 90(9):419-23. PubMed ID: 14504786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors.
    Ren J; Wang X; Jin X; Manocha D
    PLoS One; 2016; 11(5):e0155698. PubMed ID: 27187068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of lateral optic flow cues in hawkmoth flight control.
    Stöckl A; Grittner R; Pfeiffer K
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31196978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli.
    Fuller SB; Karpelson M; Censi A; Ma KY; Wood RJ
    J R Soc Interface; 2014 Aug; 11(97):20140281. PubMed ID: 24942846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A minimal longitudinal dynamic model of a tailless flapping wing robot for control design.
    Kajak KM; Karásek M; Chu QP; de Croon GCHE
    Bioinspir Biomim; 2019 Jun; 14(4):046008. PubMed ID: 31039555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Simple Flight Mill for the Study of Tethered Flight in Insects.
    Attisano A; Murphy JT; Vickers A; Moore PJ
    J Vis Exp; 2015 Dec; (106):e53377. PubMed ID: 26709537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.