These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33022614)

  • 21. Vision-based flight control in the hawkmoth Hyles lineata.
    Windsor SP; Bomphrey RJ; Taylor GK
    J R Soc Interface; 2014 Feb; 11(91):20130921. PubMed ID: 24335557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing long-range search behavior in Diptera using complex 3D virtual environments.
    Kaushik PK; Renz M; Olsson SB
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12201-12207. PubMed ID: 32424090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
    Elzinga MJ; van Breugel F; Dickinson MH
    Bioinspir Biomim; 2014 Jun; 9(2):025001. PubMed ID: 24855029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why flying insects gather at artificial light.
    Fabian ST; Sondhi Y; Allen PE; Theobald JC; Lin HT
    Nat Commun; 2024 Jan; 15(1):689. PubMed ID: 38291028
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simplified dynamic model for controlled insect hovering flight and control stability analysis.
    Yao J; Yeo KS
    Bioinspir Biomim; 2019 Jul; 14(5):056005. PubMed ID: 31239412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A dual-channel FM transmitter for acquisition of flight muscle activities from the freely flying hawkmoth, Agrius convolvuli.
    Ando N; Shimoyama I; Kanzaki R
    J Neurosci Methods; 2002 Apr; 115(2):181-7. PubMed ID: 11992669
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual control of navigation in insects and its relevance for robotics.
    Srinivasan MV
    Curr Opin Neurobiol; 2011 Aug; 21(4):535-43. PubMed ID: 21689925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.
    Expert F; Ruffier F
    Bioinspir Biomim; 2015 Feb; 10(2):026003. PubMed ID: 25717052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns.
    Karásek M; Muijres FT; De Wagter C; Remes BDW; de Croon GCHE
    Science; 2018 Sep; 361(6407):1089-1094. PubMed ID: 30213907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mimicking nature's flyers: a review of insect-inspired flying robots.
    Phan HV; Park HC
    Curr Opin Insect Sci; 2020 Dec; 42():70-75. PubMed ID: 33010474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats.
    Voigt CC; Winter Y
    J Comp Physiol B; 1999 Feb; 169(1):38-48. PubMed ID: 10093905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accommodating unobservability to control flight attitude with optic flow.
    de Croon GCHE; Dupeyroux JJG; De Wagter C; Chatterjee A; Olejnik DA; Ruffier F
    Nature; 2022 Oct; 610(7932):485-490. PubMed ID: 36261554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A lightweight, inexpensive robotic system for insect vision.
    Sabo C; Chisholm R; Petterson A; Cope A
    Arthropod Struct Dev; 2017 Sep; 46(5):689-702. PubMed ID: 28818663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dynamics of hovering flight in hummingbirds, insects and bats with implications for aerial robotics.
    Vejdani HR; Boerma DB; Swartz SM; Breuer KS
    Bioinspir Biomim; 2018 Nov; 14(1):016003. PubMed ID: 30411710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An autonomous robot inspired by insect neurophysiology pursues moving features in natural environments.
    Bagheri ZM; Cazzolato BS; Grainger S; O'Carroll DC; Wiederman SD
    J Neural Eng; 2017 Aug; 14(4):046030. PubMed ID: 28704206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bio-inspired flying robot sheds light on insect piloting abilities.
    Franceschini N; Ruffier F; Serres J
    Curr Biol; 2007 Feb; 17(4):329-35. PubMed ID: 17291757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pheromone-regulated anemotaxis in flying moths.
    Kennedy JS; Marsh D
    Science; 1974 May; 184(4140):999-1001. PubMed ID: 4826172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insect behaviour: controlling flight altitude with optic flow.
    Webb B
    Curr Biol; 2007 Feb; 17(4):R124-5. PubMed ID: 17307043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A bioinspired multi-modal flying and walking robot.
    Daler L; Mintchev S; Stefanini C; Floreano D
    Bioinspir Biomim; 2015 Jan; 10(1):016005. PubMed ID: 25599118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tracking of flying insects using pan-tilt cameras.
    Fry SN; Bichsel M; Müller P; Robert D
    J Neurosci Methods; 2000 Aug; 101(1):59-67. PubMed ID: 10967362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.