These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An origami-inspired, self-locking robotic arm that can be folded flat. Kim SJ; Lee DY; Jung GP; Cho KJ Sci Robot; 2018 Mar; 3(16):. PubMed ID: 33141746 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Phan HV; Park HC Science; 2020 Dec; 370(6521):1214-1219. PubMed ID: 33273101 [TBL] [Abstract][Full Text] [Related]
4. Earwig-inspired foldable origami wing for micro air vehicle gliding. Ishiguro R; Kawasetsu T; Motoori Y; Paik J; Hosoda K Front Robot AI; 2023; 10():1255666. PubMed ID: 38023584 [TBL] [Abstract][Full Text] [Related]
6. Self-locking degree-4 vertex origami structures. Fang H; Li S; Wang KW Proc Math Phys Eng Sci; 2016 Nov; 472(2195):20160682. PubMed ID: 27956889 [TBL] [Abstract][Full Text] [Related]
7. Designing of self-deploying origami structures using geometrically misaligned crease patterns. Saito K; Tsukahara A; Okabe Y Proc Math Phys Eng Sci; 2016 Jan; 472(2185):20150235. PubMed ID: 26997884 [TBL] [Abstract][Full Text] [Related]
8. Rigid-foldable cylindrical origami with tunable mechanical behaviors. Liu F; Terakawa T; Long S; Komori M Sci Rep; 2024 Jan; 14(1):145. PubMed ID: 38168539 [TBL] [Abstract][Full Text] [Related]
9. Self-locking and stiffening deployable tubular structures. Lee TU; Lu H; Ma J; Ha NS; Gattas JM; Xie YM Proc Natl Acad Sci U S A; 2024 Oct; 121(40):e2409062121. PubMed ID: 39331408 [TBL] [Abstract][Full Text] [Related]
11. A Highly Compact Zip Chain Arm with Origami-Inspired Folding Chain Structures. Kim DK; Jung GP Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37218762 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear mechanics of non-rigid origami: an efficient computational approach. Liu K; Paulino GH Proc Math Phys Eng Sci; 2017 Oct; 473(2206):20170348. PubMed ID: 29118663 [TBL] [Abstract][Full Text] [Related]
13. Large-scale modular and uniformly thick origami-inspired adaptable and load-carrying structures. Zhu Y; Filipov ET Nat Commun; 2024 Mar; 15(1):2353. PubMed ID: 38490986 [TBL] [Abstract][Full Text] [Related]
14. Combined effects of wrinkled vein structures and nanomechanical properties on hind wing deformation. Song Z; Tong J; Yan Y; Wu W; Tian L; Sun J Micron; 2021 Jan; 140():102965. PubMed ID: 33130546 [TBL] [Abstract][Full Text] [Related]
15. A worm-inspired robot based on origami structures driven by the magnetic field. Jin Y; Li J; Liu S; Cao G; Liu J Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37187174 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensionally Printed Self-Lock Origami: Design, Fabrication, and Simulation to Improve Performance of Rotational Joint. Zare S; Spaeth A; Suresh S; Teodorescu M Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630185 [TBL] [Abstract][Full Text] [Related]
17. Yoshimura-origami Based Earthworm-like Robot With 3-dimensional Locomotion Capability. Zhang Q; Fang H; Xu J Front Robot AI; 2021; 8():738214. PubMed ID: 34490358 [TBL] [Abstract][Full Text] [Related]
18. The hydraulic mechanism in the hind wing veins of Cybister japonicus Sharp (order: Coleoptera). Sun J; Wu W; Ling M; Bhushan B; Tong J Beilstein J Nanotechnol; 2016; 7():904-13. PubMed ID: 27547607 [TBL] [Abstract][Full Text] [Related]
19. A Cut-and-Fold Self-Sustained Compliant Oscillator for Autonomous Actuation of Origami-Inspired Robots. Yan W; Mehta A Soft Robot; 2022 Oct; 9(5):871-881. PubMed ID: 34813378 [TBL] [Abstract][Full Text] [Related]
20. Morphological diversification has led to inter-specific variation in elastic wing deformation during flight in scarab beetles. Meresman Y; Husak JF; Ben-Shlomo R; Ribak G R Soc Open Sci; 2020 Apr; 7(4):200277. PubMed ID: 32431909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]