BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 33022992)

  • 1. Reproductive Potential of Yeast Cells Depends on Overall Action of Interconnected Changes in Central Carbon Metabolism, Cellular Biosynthetic Capacity, and Proteostasis.
    Maslanka R; Zadrag-Tecza R
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33022992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Less is more or more is less: Implications of glucose metabolism in the regulation of the reproductive potential and total lifespan of the Saccharomyces cerevisiae yeast.
    Maslanka R; Zadrag-Tecza R
    J Cell Physiol; 2019 Aug; 234(10):17622-17638. PubMed ID: 30805924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells.
    Maslanka R; Bednarska S; Zadrag-Tecza R
    Arch Biochem Biophys; 2024 Jun; 756():110021. PubMed ID: 38697344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Multifaceted role of glucose and its metabolism in the regulation of physiological parameters and reproductive potential of the cells on the example of research using the yeast Saccharomyces cerevisiae].
    Maślanka R; Zadrąg-Tęcza R
    Postepy Biochem; 2021 Mar; 67(1):1-15. PubMed ID: 34378901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling Central Carbon Metabolism for Improved Pathway Yields in Saccharomyces cerevisiae.
    Tan SZ; Manchester S; Prather KL
    ACS Synth Biol; 2016 Feb; 5(2):116-24. PubMed ID: 26544022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension.
    Wei M; Fabrizio P; Madia F; Hu J; Ge H; Li LM; Longo VD
    PLoS Genet; 2009 May; 5(5):e1000467. PubMed ID: 19424415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments.
    Nidelet T; Brial P; Camarasa C; Dequin S
    Microb Cell Fact; 2016 Apr; 15():58. PubMed ID: 27044358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding regulation of metabolism through feasibility analysis.
    Nikerel E; Berkhout J; Hu F; Teusink B; Reinders MJ; de Ridder D
    PLoS One; 2012; 7(7):e39396. PubMed ID: 22808034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed and diverse metabolic and gene-expression regulation of the glycolytic and fermentative pathways in response to a HXK2 deletion in Saccharomyces cerevisiae.
    Rossell S; Lindenbergh A; van der Weijden CC; Kruckeberg AL; van Eunen K; Westerhoff HV; Bakker BM
    FEMS Yeast Res; 2008 Feb; 8(1):155-64. PubMed ID: 17662056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.
    Smith DL; McClure JM; Matecic M; Smith JS
    Aging Cell; 2007 Oct; 6(5):649-62. PubMed ID: 17711561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological properties of Saccharomyces cerevisiae from which hexokinase II has been deleted.
    Diderich JA; Raamsdonk LM; Kruckeberg AL; Berden JA; Van Dam K
    Appl Environ Microbiol; 2001 Apr; 67(4):1587-93. PubMed ID: 11282609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNF1 controls the glycolytic flux and mitochondrial respiration.
    Martinez-Ortiz C; Carrillo-Garmendia A; Correa-Romero BF; Canizal-García M; González-Hernández JC; Regalado-Gonzalez C; Olivares-Marin IK; Madrigal-Perez LA
    Yeast; 2019 Aug; 36(8):487-494. PubMed ID: 31074533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway.
    Cadière A; Ortiz-Julien A; Camarasa C; Dequin S
    Metab Eng; 2011 May; 13(3):263-71. PubMed ID: 21300171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Genetic Requirements for Pentose Fermentation in Budding Yeast.
    Mittelman K; Barkai N
    G3 (Bethesda); 2017 Jun; 7(6):1743-1752. PubMed ID: 28404660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of calorie restriction and calorie excess for the physiological parameters of the yeast Saccharomyces cerevisiae cells.
    Maslanka R; Kwolek-Mirek M; Zadrag-Tecza R
    FEMS Yeast Res; 2017 Dec; 17(8):. PubMed ID: 29145638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme calorie restriction and energy source starvation in Saccharomyces cerevisiae represent distinct physiological states.
    Boender LG; Almering MJ; Dijk M; van Maris AJ; de Winde JH; Pronk JT; Daran-Lapujade P
    Biochim Biophys Acta; 2011 Dec; 1813(12):2133-44. PubMed ID: 21803078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene regulatory changes in yeast during life extension by nutrient limitation.
    Wang J; Jiang JC; Jazwinski SM
    Exp Gerontol; 2010 Aug; 45(7-8):621-31. PubMed ID: 20178842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.
    Yamada R; Wakita K; Ogino H
    ACS Synth Biol; 2017 Apr; 6(4):659-666. PubMed ID: 28080037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1.
    Yao Y; Tsuchiyama S; Yang C; Bulteau AL; He C; Robison B; Tsuchiya M; Miller D; Briones V; Tar K; Potrero A; Friguet B; Kennedy BK; Schmidt M
    PLoS Genet; 2015 Jan; 11(1):e1004968. PubMed ID: 25629410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.