These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33022995)

  • 1. Crack Propagation Velocity Determination by High-speed Camera Image Sequence Processing.
    Liebold F; A Heravi A; Mosig O; Curbach M; Mechtcherine V; Maas HG
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33022995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-speed imaging for high-impact concrete deformation analysis in pre- and post-cracking stages.
    Duran Vergara LC; Liebold F; Maas HG
    Appl Opt; 2024 Jan; 63(2):467-482. PubMed ID: 38227244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental dataset to assess the structural performance of cracked reinforced concrete using Digital Image Correlation techniques with fixed and moving cameras.
    Sjölander A; Belloni V; Peterson V; Ledin J
    Data Brief; 2023 Dec; 51():109703. PubMed ID: 37965615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation Speed of Dynamic Mode-I Cracks in Self-Compacting Steel Fiber-Reinforced Concrete.
    Pan K; Yu RC; Zhang X; Ruiz G; Wu Z
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32932636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.
    Kim H; Lee J; Ahn E; Cho S; Shin M; Sim SH
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization method for stress-field evolution during rapid crack propagation using 3D printing and photoelastic testing techniques.
    Ju Y; Xie H; Zhao X; Mao L; Ren Z; Zheng J; Chiang FP; Wang Y; Gao F
    Sci Rep; 2018 Mar; 8(1):4353. PubMed ID: 29531306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffraction-grating-based in situ displacement, tilt, and strain measurements on high-speed composite rotors.
    Lich J; Wollmann T; Filippatos A; Gude M; Czarske J; Kuschmierz R
    Appl Opt; 2019 Oct; 58(29):8021-8030. PubMed ID: 31674358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Plastic Crack-Tip Opening Displacement Tool Based on Digital Image Correlation for Estimating the Fatigue-Crack-Growth Law on 316L Stainless Steel.
    Ajmal M; Lopez-Crespo C; Cruces AS; Lopez-Crespo P
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on the Deformation and Failure Characteristics of Concrete in Dynamic Splitting Tests.
    Xu X; Chi LY; Yang J; Lv N
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Compressive and Tensile Characterisation of Igneous Rocks Using Split-Hopkinson Pressure Bar and Digital Image Correlation.
    Wessling A; Kajberg J
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Crack Image Recognition Characteristics in Concrete Structures Depending on the Illumination and Image Acquisition Distance through Outdoor Experiments.
    Cho HW; Yoon HJ; Yoon JC
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27782056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crack Monitoring in Resonance Fatigue Testing of Welded Specimens Using Digital Image Correlation.
    Friedrich N; Ehlers S
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Automatic Concrete Crack-Detection Method Fusing Point Clouds and Images Based on Improved Otsu's Algorithm.
    Chen X; Li J; Huang S; Cui H; Liu P; Sun Q
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Measurement of the Strain Field at the Fatigue Crack Tip Based on Sub-Image Stitching and Matching DIC.
    Lin Z; Shang H; Gao H; Huang X
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements.
    Słoński M; Tekieli M
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-speed holographic microscopy for fast-propagating cracks in transparent materials.
    Suzuki S; Nozaki Y; Kimura H
    Appl Opt; 1997 Oct; 36(28):7224-33. PubMed ID: 18264231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed X-ray visualization of dynamic crack initiation and propagation in bone.
    Zhai X; Guo Z; Gao J; Kedir N; Nie Y; Claus B; Sun T; Xiao X; Fezzaa K; Chen WW
    Acta Biomater; 2019 May; 90():278-286. PubMed ID: 30926579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic analysis and simulation of crack propagation in concrete pavements and surfaces.
    Leblouba M; Tarabin M; Zahri M
    Sci Rep; 2022 Aug; 12(1):14157. PubMed ID: 35986156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on crack propagation pattern and fracture process zone evolution based on far-field displacement by using DIC.
    Qiao Y; Guan XB; Zhang ZX
    Sci Rep; 2023 Nov; 13(1):19523. PubMed ID: 37945625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.