BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33023010)

  • 1. Sex Differences in Diabetes- and TGF-β1-Induced Renal Damage.
    Ziller N; Kotolloshi R; Esmaeili M; Liebisch M; Mrowka R; Baniahmad A; Liehr T; Wolf G; Loeffler I
    Cells; 2020 Oct; 9(10):. PubMed ID: 33023010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b.
    Wang B; Jha JC; Hagiwara S; McClelland AD; Jandeleit-Dahm K; Thomas MC; Cooper ME; Kantharidis P
    Kidney Int; 2014 Feb; 85(2):352-61. PubMed ID: 24088962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylshikonin from Zicao ameliorates renal dysfunction and fibrosis in diabetic mice by inhibiting TGF-β1/Smad pathway.
    Li Z; Hong Z; Peng Z; Zhao Y; Shao R
    Hum Cell; 2018 Jul; 31(3):199-209. PubMed ID: 29549584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-92d-3p suppresses the progression of diabetic nephropathy renal fibrosis by inhibiting the C3/HMGB1/TGF-β1 pathway.
    Zhang Y
    Biosci Rep; 2021 Sep; 41(9):. PubMed ID: 33729484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal (pro)renin receptor contributes to development of diabetic kidney disease through transforming growth factor-β1-connective tissue growth factor signalling cascade.
    Huang J; Matavelli LC; Siragy HM
    Clin Exp Pharmacol Physiol; 2011 Apr; 38(4):215-21. PubMed ID: 21265872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Huangkui capsule in combination with metformin ameliorates diabetic nephropathy via the Klotho/TGF-β1/p38MAPK signaling pathway.
    Gu LY; Yun-Sun ; Tang HT; Xu ZX
    J Ethnopharmacol; 2021 Dec; 281():113548. PubMed ID: 33152427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of vitamin D on renal fibrosis in diabetic nephropathy model rats.
    Tian Y; Lv G; Yang Y; Zhang Y; Yu R; Zhu J; Xiao L; Zhu J
    Int J Clin Exp Pathol; 2014; 7(6):3028-37. PubMed ID: 25031721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased glomerular and tubular expression of transforming growth factor-beta1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse.
    Hong SW; Isono M; Chen S; Iglesias-De La Cruz MC; Han DC; Ziyadeh FN
    Am J Pathol; 2001 May; 158(5):1653-63. PubMed ID: 11337363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells.
    Castro NE; Kato M; Park JT; Natarajan R
    J Biol Chem; 2014 Oct; 289(42):29001-13. PubMed ID: 25204661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of IGFBP7 in Diabetic Nephropathy: TGF-β1 Induces IGFBP7 via Smad2/4 in Human Renal Proximal Tubular Epithelial Cells.
    Watanabe J; Takiyama Y; Honjyo J; Makino Y; Fujita Y; Tateno M; Haneda M
    PLoS One; 2016; 11(3):e0150897. PubMed ID: 26974954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FSP1-specific SMAD2 knockout in renal tubular, endothelial, and interstitial cells reduces fibrosis and epithelial-to-mesenchymal transition in murine STZ-induced diabetic nephropathy.
    Loeffler I; Liebisch M; Allert S; Kunisch E; Kinne RW; Wolf G
    Cell Tissue Res; 2018 Apr; 372(1):115-133. PubMed ID: 29209813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy.
    Wang S; Denichilo M; Brubaker C; Hirschberg R
    Kidney Int; 2001 Jul; 60(1):96-105. PubMed ID: 11422741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of centella asiatica granule on the expression of TGF-β
    Ma JW; Wang HT; Liu HF; Ding Y; Bai JQ; Zhang Z
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2018 Jan; 34(1):69-73. PubMed ID: 29926663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaihuang-Yishen granule inhibits diabetic kidney disease in rats through blocking TGF-β/Smad3 signaling.
    Zhao TT; Zhang HJ; Lu XG; Huang XR; Zhang WK; Wang H; Lan HY; Li P
    PLoS One; 2014; 9(3):e90807. PubMed ID: 24646636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting cellular drivers and counter-regulators of hyperglycaemia- and transforming growth factor-β1-associated profibrotic responses in diabetic kidney disease.
    Docherty NG; Murphy M; Martin F; Brennan EP; Godson C
    Exp Physiol; 2014 Sep; 99(9):1154-62. PubMed ID: 25085843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deregulation of Hippo-TAZ pathway during renal injury confers a fibrotic maladaptive phenotype.
    Anorga S; Overstreet JM; Falke LL; Tang J; Goldschmeding RG; Higgins PJ; Samarakoon R
    FASEB J; 2018 May; 32(5):2644-2657. PubMed ID: 29298862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced beta 2 glycoprotein I improves diabetic nephropathy via inhibiting TGF-β1-p38 MAPK pathway.
    Wang T; Chen SS; Chen R; Yu DM; Yu P
    Int J Clin Exp Pathol; 2015; 8(3):2321-33. PubMed ID: 26045739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-β1-induced kidney injury in a mouse model of diabetes.
    Lo CS; Shi Y; Chang SY; Abdo S; Chenier I; Filep JG; Ingelfinger JR; Zhang SL; Chan JS
    Diabetologia; 2015 Oct; 58(10):2443-54. PubMed ID: 26232095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tribbles 3 regulates the fibrosis cytokine TGF- β 1 through ERK1/2-MAPK signaling pathway in diabetic nephropathy.
    Zhang L; Zhang J; Liu X; Liu S; Tian J
    J Immunol Res; 2014; 2014():240396. PubMed ID: 25133193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy.
    Brennan EP; Morine MJ; Walsh DW; Roxburgh SA; Lindenmeyer MT; Brazil DP; Gaora PÓ; Roche HM; Sadlier DM; Cohen CD; ; Godson C; Martin F
    Biochim Biophys Acta; 2012 Apr; 1822(4):589-99. PubMed ID: 22266139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.