These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
540 related articles for article (PubMed ID: 33023503)
1. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus. Jin S; Zhang S; Liu Y; Jiang Y; Wang Y; Li J; Ni Y BMC Plant Biol; 2020 Oct; 20(1):458. PubMed ID: 33023503 [TBL] [Abstract][Full Text] [Related]
2. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. Pu Y; Gao J; Guo Y; Liu T; Zhu L; Xu P; Yi B; Wen J; Tu J; Ma C; Fu T; Zou J; Shen J BMC Plant Biol; 2013 Dec; 13():215. PubMed ID: 24330756 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide association study (GWAS) of leaf cuticular wax components in Camelina sativa identifies genetic loci related to intracellular wax transport. Luo Z; Tomasi P; Fahlgren N; Abdel-Haleem H BMC Plant Biol; 2019 May; 19(1):187. PubMed ID: 31064322 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide-association study and transcriptome analysis reveal the genetic basis controlling the formation of leaf wax in Brassica napus. Long Z; Tu M; Xu Y; Pak H; Zhu Y; Dong J; Lu Y; Jiang L J Exp Bot; 2023 Apr; 74(8):2726-2739. PubMed ID: 36724105 [TBL] [Abstract][Full Text] [Related]
5. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). Zhou H; Xiao X; Asjad A; Han D; Zheng W; Xiao G; Huang Y; Zhou Q BMC Plant Biol; 2022 Mar; 22(1):130. PubMed ID: 35313826 [TBL] [Abstract][Full Text] [Related]
6. BnUC1 Is a Key Regulator of Epidermal Wax Biosynthesis and Lipid Transport in Ni F; Yang M; Chen J; Guo Y; Wan S; Zhao Z; Yang S; Kong L; Chu P; Guan R Int J Mol Sci; 2024 Sep; 25(17):. PubMed ID: 39273481 [TBL] [Abstract][Full Text] [Related]
7. Identification of candidate genes involved in wax deposition in Poa pratensis by RNA-seq. Ni Y; Guo N; Zhao Q; Guo Y BMC Genomics; 2016 Apr; 17():314. PubMed ID: 27129471 [TBL] [Abstract][Full Text] [Related]
8. Yellow nutsedge WRI4-like gene improves drought tolerance in Arabidopsis thaliana by promoting cuticular wax biosynthesis. Cheng C; Hu S; Han Y; Xia D; Huang BL; Wu W; Hussain J; Zhang X; Huang B BMC Plant Biol; 2020 Oct; 20(1):498. PubMed ID: 33129252 [TBL] [Abstract][Full Text] [Related]
9. RNA-Seq reveals leaf cuticular wax-related genes in Welsh onion. Liu Q; Wen C; Zhao H; Zhang L; Wang J; Wang Y PLoS One; 2014; 9(11):e113290. PubMed ID: 25415343 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Analysis of Coding and Long Non-Coding RNAs Involved in Cuticular Wax Biosynthesis in Cabbage ( Zhu X; Tai X; Ren Y; Chen J; Bo T Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31185589 [TBL] [Abstract][Full Text] [Related]
11. Wang S; Bai C; Luo N; Jiang Y; Wang Y; Liu Y; Chen C; Wang Y; Gan Q; Jin S; Ni Y Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901718 [TBL] [Abstract][Full Text] [Related]
12. Responses of cuticular waxes of faba bean to light wavelengths and selection of candidate genes for cuticular wax biosynthesis. Huang L; Xiao Q; Zhao X; Wang D; Wei L; Li X; Liu Y; He Z; Kang L; Guo Y Plant Genome; 2020 Nov; 13(3):e20058. PubMed ID: 33124766 [TBL] [Abstract][Full Text] [Related]
13. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers. Fakhrzad F; Jowkar A BMC Plant Biol; 2024 Apr; 24(1):330. PubMed ID: 38664602 [TBL] [Abstract][Full Text] [Related]
14. Identification of genetic variation for salt tolerance in Brassica napus using genome-wide association mapping. Wassan GM; Khanzada H; Zhou Q; Mason AS; Keerio AA; Khanzada S; Solangi AM; Faheem M; Fu D; He H Mol Genet Genomics; 2021 Mar; 296(2):391-408. PubMed ID: 33464396 [TBL] [Abstract][Full Text] [Related]
15. Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. Zhou L; Ni E; Yang J; Zhou H; Liang H; Li J; Jiang D; Wang Z; Liu Z; Zhuang C PLoS One; 2013; 8(5):e65139. PubMed ID: 23741473 [TBL] [Abstract][Full Text] [Related]
16. DEWAX2 Transcription Factor Negatively Regulates Cuticular Wax Biosynthesis in Arabidopsis Leaves. Kim H; Go YS; Suh MC Plant Cell Physiol; 2018 May; 59(5):966-977. PubMed ID: 29425344 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). Xuan L; Yan T; Lu L; Zhao X; Wu D; Hua S; Jiang L Plant Cell Environ; 2020 Mar; 43(3):675-691. PubMed ID: 31889328 [TBL] [Abstract][Full Text] [Related]
18. Differential expression of miRNAs and their targets in wax-deficient rapeseed. Liu T; Tang J; Chen L; Zeng J; Wen J; Yi B; Ma C; Tu J; Fu T; Shen J Sci Rep; 2019 Aug; 9(1):12201. PubMed ID: 31434948 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Islam MA; Du H; Ning J; Ye H; Xiong L Plant Mol Biol; 2009 Jul; 70(4):443-56. PubMed ID: 19322663 [TBL] [Abstract][Full Text] [Related]
20. Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. Körber N; Bus A; Li J; Higgins J; Bancroft I; Higgins EE; Parkin IA; Salazar-Colqui B; Snowdon RJ; Stich B BMC Plant Biol; 2015 Jun; 15():136. PubMed ID: 26055390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]