BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33023640)

  • 1. Regulation of SETD2 stability is important for the fidelity of H3K36me3 deposition.
    Bhattacharya S; Workman JL
    Epigenetics Chromatin; 2020 Oct; 13(1):40. PubMed ID: 33023640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The disordered regions of the methyltransferase SETD2 govern its function by regulating its proteolysis and phase separation.
    Bhattacharya S; Lange JJ; Levy M; Florens L; Washburn MP; Workman JL
    J Biol Chem; 2021 Sep; 297(3):101075. PubMed ID: 34391778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle.
    Gautam D; Johnson BA; Mac M; Moody CA
    PLoS Pathog; 2018 Oct; 14(10):e1007367. PubMed ID: 30312361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPOP-containing complex regulates SETD2 stability and H3K36me3-coupled alternative splicing.
    Zhu K; Lei PJ; Ju LG; Wang X; Huang K; Yang B; Shao C; Zhu Y; Wei G; Fu XD; Li L; Wu M
    Nucleic Acids Res; 2017 Jan; 45(1):92-105. PubMed ID: 27614073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The methyltransferase SETD2 couples transcription and splicing by engaging mRNA processing factors through its SHI domain.
    Bhattacharya S; Levy MJ; Zhang N; Li H; Florens L; Washburn MP; Workman JL
    Nat Commun; 2021 Mar; 12(1):1443. PubMed ID: 33664260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Benzene Hematotoxic and Reactive Metabolite 1,4-Benzoquinone Impairs the Activity of the Histone Methyltransferase SET Domain Containing 2 (SETD2) and Causes Aberrant Histone H3 Lysine 36 Trimethylation (H3K36me3).
    Berthelet J; Michail C; Bui LC; Le Coadou L; Sirri V; Wang L; Dulphy N; Dupret JM; Chomienne C; Guidez F; Rodrigues-Lima F
    Mol Pharmacol; 2021 Sep; 100(3):283-294. PubMed ID: 34266924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair.
    Li L; Wang Y
    J Biol Chem; 2017 Jul; 292(28):11951-11959. PubMed ID: 28546430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shaping the cellular landscape with Set2/SETD2 methylation.
    McDaniel SL; Strahl BD
    Cell Mol Life Sci; 2017 Sep; 74(18):3317-3334. PubMed ID: 28386724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A New Chromatin-Cytoskeleton Link in Cancer.
    Giaccia AJ
    Mol Cancer Res; 2016 Dec; 14(12):1173-1175. PubMed ID: 27528705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36.
    de Almeida SF; Grosso AR; Koch F; Fenouil R; Carvalho S; Andrade J; Levezinho H; Gut M; Eick D; Gut I; Andrau JC; Ferrier P; Carmo-Fonseca M
    Nat Struct Mol Biol; 2011 Jul; 18(9):977-83. PubMed ID: 21792193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SETD2 Methyltransferase Supports Productive HPV31 Replication through the LEDGF/CtIP/Rad51 Pathway.
    Mac M; DeVico BM; Raspanti SM; Moody CA
    J Virol; 2023 May; 97(5):e0020123. PubMed ID: 37154769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Chromatin and Cytoskeletal Remodeling by SETD2.
    Park IY; Powell RT; Tripathi DN; Dere R; Ho TH; Blasius TL; Chiang YC; Davis IJ; Fahey CC; Hacker KE; Verhey KJ; Bedford MT; Jonasch E; Rathmell WK; Walker CL
    Cell; 2016 Aug; 166(4):950-962. PubMed ID: 27518565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma.
    Ho TH; Park IY; Zhao H; Tong P; Champion MD; Yan H; Monzon FA; Hoang A; Tamboli P; Parker AS; Joseph RW; Qiao W; Dykema K; Tannir NM; Castle EP; Nunez-Nateras R; Teh BT; Wang J; Walker CL; Hung MC; Jonasch E
    Oncogene; 2016 Mar; 35(12):1565-74. PubMed ID: 26073078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation.
    Yoh SM; Lucas JS; Jones KA
    Genes Dev; 2008 Dec; 22(24):3422-34. PubMed ID: 19141475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond.
    Skucha A; Ebner J; Grebien F
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30818762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SETting the Stage for Cancer Development: SETD2 and the Consequences of Lost Methylation.
    Fahey CC; Davis IJ
    Cold Spring Harb Perspect Med; 2017 May; 7(5):. PubMed ID: 28159833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between H3K36me3, methyltransferase SETD2, and mismatch recognition protein MutSα facilitates processing of oxidative DNA damage in human cells.
    Guo S; Fang J; Xu W; Ortega J; Liu CY; Gu L; Chang Z; Li GM
    J Biol Chem; 2022 Jul; 298(7):102102. PubMed ID: 35667440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated levels of the methyltransferase SETD2 causes transcription and alternative splicing changes resulting in oncogenic phenotypes.
    Bhattacharya S; Reddy D; Zhang N; Li H; Workman JL
    Front Cell Dev Biol; 2022; 10():945668. PubMed ID: 36035998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between gene body DNA methylation and intragenic H3K9me3 and H3K36me3 chromatin marks.
    Hahn MA; Wu X; Li AX; Hahn T; Pfeifer GP
    PLoS One; 2011 Apr; 6(4):e18844. PubMed ID: 21526191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability.
    Pfister SX; Ahrabi S; Zalmas LP; Sarkar S; Aymard F; Bachrati CZ; Helleday T; Legube G; La Thangue NB; Porter AC; Humphrey TC
    Cell Rep; 2014 Jun; 7(6):2006-18. PubMed ID: 24931610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.