BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33024138)

  • 21. Two- and three-dimensional de-drifting algorithms for fiducially marked image stacks.
    Wiener GI; Kadosh D; Weihs D
    J Biomech; 2020 Sep; 110():109967. PubMed ID: 32827777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of Cell Adhesion using Hydrogel Patterning Techniques for Applications in Traction Force Microscopy.
    Christian J; Blumberg JW; Probst D; Lo Giudice C; Sindt S; Selhuber-Unkel C; Schwarz US; Cavalcanti-Adam EA
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35156655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid, topology-based particle tracking for high-resolution measurements of large complex 3D motion fields.
    Patel M; Leggett SE; Landauer AK; Wong IY; Franck C
    Sci Rep; 2018 Apr; 8(1):5581. PubMed ID: 29615650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
    Wang Y; Nasief HG; Kohn S; Milkowski A; Clary T; Barnes S; Barbone PE; Hall TJ
    Ultrason Imaging; 2017 Nov; 39(6):369-392. PubMed ID: 28585511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid analysis of cell-generated forces within a multicellular aggregate using microsphere-based traction force microscopy.
    Kaytanlı B; Khankhel AH; Cohen N; Valentine MT
    Soft Matter; 2020 May; 16(17):4192-4199. PubMed ID: 32286589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis.
    Karatolios K; Wittek A; Nwe TH; Bihari P; Shelke A; Josef D; Schmitz-Rixen T; Geks J; Maisch B; Blase C; Moosdorf R; Vogt S
    Ann Thorac Surg; 2013 Nov; 96(5):1664-71. PubMed ID: 23998405
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatiotemporally Super-Resolved Volumetric Traction Force Microscopy.
    Colin-York H; Javanmardi Y; Barbieri L; Li D; Korobchevskaya K; Guo Y; Hall C; Taylor A; Khuon S; Sheridan GK; Chew TL; Li D; Moeendarbary E; Fritzsche M
    Nano Lett; 2019 Jul; 19(7):4427-4434. PubMed ID: 31199151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inverse method based on 3D nonlinear physically constrained minimisation in the framework of traction force microscopy.
    Sanz-Herrera JA; Barrasa-Fano J; Cóndor M; Van Oosterwyck H
    Soft Matter; 2021 Nov; 17(45):10210-10222. PubMed ID: 33165455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional quantification of cellular traction forces and mechanosensing of thin substrata by fourier traction force microscopy.
    del Álamo JC; Meili R; Álvarez-González B; Alonso-Latorre B; Bastounis E; Firtel R; Lasheras JC
    PLoS One; 2013; 8(9):e69850. PubMed ID: 24023712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Resolution, Highly-Integrated Traction Force Microscopy Software.
    Mittal N; Han SJ
    Curr Protoc; 2021 Sep; 1(9):e233. PubMed ID: 34491632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluctuation-Based Super-Resolution Traction Force Microscopy.
    Stubb A; Laine RF; Miihkinen M; Hamidi H; Guzmán C; Henriques R; Jacquemet G; Ivaska J
    Nano Lett; 2020 Apr; 20(4):2230-2245. PubMed ID: 32142297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Traction force microscopy with optimized regularization and automated Bayesian parameter selection for comparing cells.
    Huang Y; Schell C; Huber TB; Şimşek AN; Hersch N; Merkel R; Gompper G; Sabass B
    Sci Rep; 2019 Jan; 9(1):539. PubMed ID: 30679578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel inverse finite-element formulation for reconstruction of relative local stiffness in heterogeneous extra-cellular matrix and traction forces on active cells.
    Chen S; Xu W; Kim J; Nan H; Zheng Y; Sun B; Jiao Y
    Phys Biol; 2019 Mar; 16(3):036002. PubMed ID: 30721891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging MDCK cysts with a single (selective) plane illumination microscope.
    Swoger J; Pampaloni F; Stelzer EH
    Cold Spring Harb Protoc; 2014 Jan; 2014(1):114-8. PubMed ID: 24371325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. pyTFM: A tool for traction force and monolayer stress microscopy.
    Bauer A; Prechová M; Fischer L; Thievessen I; Gregor M; Fabry B
    PLoS Comput Biol; 2021 Jun; 17(6):e1008364. PubMed ID: 34153027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Super-resolution traction force microscopy with enhanced tracer density enables capturing molecular scale traction.
    Xu Y; Guo C; Yang X; Yuan W; Zhang X; Sun Y; Wen G; Wang L; Li H; Xiong C; Yang C
    Biomater Sci; 2023 Jan; 11(3):1056-1065. PubMed ID: 36562450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particle retracking algorithm capable of quantifying large, local matrix deformation for traction force microscopy.
    Haarman SE; Kim SY; Isogai T; Dean KM; Han SJ
    PLoS One; 2022; 17(6):e0268614. PubMed ID: 35731725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional ultrasound strain imaging of skeletal muscles.
    Gijsbertse K; Sprengers AM; Nillesen MM; Hansen HH; Lopata RG; Verdonschot N; de Korte CL
    Phys Med Biol; 2017 Jan; 62(2):596-611. PubMed ID: 28033112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determining substrate displacement and cell traction fields--a new approach.
    Yang Z; Lin JS; Chen J; Wang JH
    J Theor Biol; 2006 Oct; 242(3):607-16. PubMed ID: 16782134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bayesian traction force estimation using cell boundary-dependent force priors.
    Fujikawa R; Okimura C; Kozawa S; Ikeda K; Inagaki N; Iwadate Y; Sakumura Y
    Biophys J; 2023 Dec; 122(23):4542-4554. PubMed ID: 37915171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.