These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 33024195)
1. Molecular changes associated with spontaneous phenotypic variation of Paenibacillus polymyxa, a commonly used biocontrol agent, and temperature-dependent control of variation. Lee Y; Kim YS; Balaraju K; Seo YS; Park J; Ryu CM; Park SH; Kim JF; Kang S; Jeon Y Sci Rep; 2020 Oct; 10(1):16586. PubMed ID: 33024195 [TBL] [Abstract][Full Text] [Related]
2. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. Weselowski B; Nathoo N; Eastman AW; MacDonald J; Yuan ZC BMC Microbiol; 2016 Oct; 16(1):244. PubMed ID: 27756215 [TBL] [Abstract][Full Text] [Related]
3. Occurrence of phenotypic variation in Lee Y; Balaraju K; Kim SY; Jeon Y Biotechnol Rep (Amst); 2022 Jun; 34():e00719. PubMed ID: 35686012 [TBL] [Abstract][Full Text] [Related]
4. Comparative genome analysis and mining of secondary metabolites of Paenibacillus polymyxa. Wang B; Cheng H; Qian W; Zhao W; Liang C; Liu C; Cui G; Liu H; Zhang L Genes Genet Syst; 2020 Aug; 95(3):141-150. PubMed ID: 32611933 [TBL] [Abstract][Full Text] [Related]
5. Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol. Zhou L; Zhang T; Tang S; Fu X; Yu S Antonie Van Leeuwenhoek; 2020 Nov; 113(11):1539-1558. PubMed ID: 32816227 [TBL] [Abstract][Full Text] [Related]
6. Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Du N; Shi L; Yuan Y; Sun J; Shu S; Guo S Microbiol Res; 2017 Sep; 202():1-10. PubMed ID: 28647117 [TBL] [Abstract][Full Text] [Related]
7. Influence of phenotypic variation of Lee Y; Kwon S; Balaraju K; Jeon Y Front Microbiol; 2024; 15():1427265. PubMed ID: 39144205 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Kwon YS; Lee DY; Rakwal R; Baek SB; Lee JH; Kwak YS; Seo JS; Chung WS; Bae DW; Kim SG Proteomics; 2016 Jan; 16(1):122-35. PubMed ID: 26460066 [TBL] [Abstract][Full Text] [Related]
9. Complete Genome Sequence of Industrial Biocontrol Strain Luo Y; Cheng Y; Yi J; Zhang Z; Luo Q; Zhang D; Li Y Front Microbiol; 2018; 9():1520. PubMed ID: 30050512 [No Abstract] [Full Text] [Related]
10. Genomics assisted functional characterization of Paenibacillus polymyxa HK4 as a biocontrol and plant growth promoting bacterium. Soni R; Rawal K; Keharia H Microbiol Res; 2021 Jul; 248():126734. PubMed ID: 33690069 [TBL] [Abstract][Full Text] [Related]
11. Identification of the biosynthesis gene cluster for the novel lantibiotic paenilan from Paenibacillus polymyxa E681 and characterization of its product. Park JE; Kim HR; Park SY; Choi SK; Park SH J Appl Microbiol; 2017 Nov; 123(5):1133-1147. PubMed ID: 28869797 [TBL] [Abstract][Full Text] [Related]
12. Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Xie J; Shi H; Du Z; Wang T; Liu X; Chen S Sci Rep; 2016 Feb; 6():21329. PubMed ID: 26856413 [TBL] [Abstract][Full Text] [Related]
13. Paenibacillus polymyxa, a Jack of all trades. Langendries S; Goormachtig S Environ Microbiol; 2021 Oct; 23(10):5659-5669. PubMed ID: 33684235 [TBL] [Abstract][Full Text] [Related]
14. A single amino acid mutation in Spo0A results in sporulation deficiency of Paenibacillus polymyxa SC2. Hou X; Yu X; Du B; Liu K; Yao L; Zhang S; Selin C; Fernando WG; Wang C; Ding Y Res Microbiol; 2016; 167(6):472-9. PubMed ID: 27208661 [TBL] [Abstract][Full Text] [Related]
15. Response of Paenibacillus polymyxa SC2 to the stress of polymyxin B and a key ABC transporter YwjA involved. Li H; E W; Zhao D; Liu H; Pei J; Du B; Liu K; Zhu X; Wang C Appl Microbiol Biotechnol; 2024 Dec; 108(1):17. PubMed ID: 38170316 [TBL] [Abstract][Full Text] [Related]
16. Insights in the Complex DegU, DegS, and Spo0A Regulation System of Paenibacillus polymyxa by CRISPR-Cas9-Based Targeted Point Mutations. Meliawati M; May T; Eckerlin J; Heinrich D; Herold A; Schmid J Appl Environ Microbiol; 2022 Jun; 88(11):e0016422. PubMed ID: 35588272 [TBL] [Abstract][Full Text] [Related]
17. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Abdallah Y; Yang M; Zhang M; Masum MMI; Ogunyemi SO; Hossain A; An Q; Yan C; Li B Lett Appl Microbiol; 2019 May; 68(5):423-429. PubMed ID: 30659625 [TBL] [Abstract][Full Text] [Related]
18. Comparative and Functional Analyses of Two Sequenced Li JY; Gao TT; Wang Q Front Genet; 2020; 11():564939. PubMed ID: 33391337 [TBL] [Abstract][Full Text] [Related]
19. Genomic and phenotypic analyses reveal Yang F; Jiang H; Ma K; Hegazy A; Wang X; Liang S; Chang G; Yu L; Tian B; Shi X Front Microbiol; 2024; 15():1359263. PubMed ID: 38591040 [TBL] [Abstract][Full Text] [Related]
20. Fusaricidin Biosynthesis Is Controlled via a KinB-Spo0A-AbrB Signal Pathway in Li Y; Zhang H; Li Y; Chen S Mol Plant Microbe Interact; 2021 Dec; 34(12):1378-1389. PubMed ID: 34890249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]