These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33024221)

  • 1. Bone-conduction hyperacusis induced by superior canal dehiscence in human: the underlying mechanism.
    Guan X; Cheng YS; Galaiya DJ; Rosowski JJ; Lee DJ; Nakajima HH
    Sci Rep; 2020 Oct; 10(1):16564. PubMed ID: 33024221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superior Canal Dehiscence Similarly Affects Cochlear Pressures in Temporal Bones and Audiograms in Patients.
    Cheng YS; Raufer S; Guan X; Halpin CF; Lee DJ; Nakajima HH
    Ear Hear; 2020; 41(4):804-810. PubMed ID: 31688316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the effects of superior canal dehiscence location and size on intracochlear sound pressures.
    Niesten ME; Stieger C; Lee DJ; Merchant JP; Grolman W; Rosowski JJ; Nakajima HH
    Audiol Neurootol; 2015; 20(1):62-71. PubMed ID: 25531117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of superior semicircular canal dehiscence on intracochlear sound pressures.
    Pisano DV; Niesten ME; Merchant SN; Nakajima HH
    Audiol Neurootol; 2012; 17(5):338-48. PubMed ID: 22814034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of human middle- and inner-ear mechanics with dehiscence of the superior semicircular canal.
    Chien W; Ravicz ME; Rosowski JJ; Merchant SN
    Otol Neurotol; 2007 Feb; 28(2):250-7. PubMed ID: 17255894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones During Bone Conduction Stimulation.
    Stieger C; Guan X; Farahmand RB; Page BF; Merchant JP; Abur D; Nakajima HH
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):523-539. PubMed ID: 30171386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential intracochlear sound pressure measurements in normal human temporal bones.
    Nakajima HH; Dong W; Olson ES; Merchant SN; Ravicz ME; Rosowski JJ
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):23-36. PubMed ID: 19067078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inner ear contribution to bone conduction hearing in the human.
    Stenfelt S
    Hear Res; 2015 Nov; 329():41-51. PubMed ID: 25528492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superior-semicircular-canal dehiscence: effects of location, shape, and size on sound conduction.
    Kim N; Steele CR; Puria S
    Hear Res; 2013 Jul; 301():72-84. PubMed ID: 23562774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of inner ear contribution in bone conduction in chinchilla.
    Chhan D; Röösli C; McKinnon ML; Rosowski JJ
    Hear Res; 2013 Jul; 301():66-71. PubMed ID: 23211609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Animal model of cochlear third window in the scala vestibuli or scala tympani.
    Attias J; Preis M; Shemesh R; Hadar T; Nageris BI
    Otol Neurotol; 2010 Aug; 31(6):985-90. PubMed ID: 20517168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical, experimental, and theoretical investigations of the effect of superior semicircular canal dehiscence on hearing mechanisms.
    Rosowski JJ; Songer JE; Nakajima HH; Brinsko KM; Merchant SN
    Otol Neurotol; 2004 May; 25(3):323-32. PubMed ID: 15129113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Auditory Sensitivity to Body Vibrations in Superior Canal Dehiscence Syndrome.
    Brantberg K; Verrecchia L; Westin M
    Audiol Neurootol; 2016; 21(6):365-371. PubMed ID: 28081534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of round window reinforcement on middle and inner ear mechanics with air and bone conduction stimulation.
    Geerardyn A; Wils I; Putzeys T; Fierens G; Wouters J; Verhaert N
    Hear Res; 2024 May; 450():109049. PubMed ID: 38850830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing Artifacts in Intracochlear Pressure Measurements to Study Sound Transmission by Bone Conduction Stimulation in Humans.
    Borgers C; Fierens G; Putzeys T; van Wieringen A; Verhaert N
    Otol Neurotol; 2019 Oct; 40(9):e858-e867. PubMed ID: 31498291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrasound transmission in the human ear: Implications for acoustic and vestibular responses of the normal and dehiscent inner ear.
    Raufer S; Masud SF; Nakajima HH
    J Acoust Soc Am; 2018 Jul; 144(1):332. PubMed ID: 30075646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.