These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 33024226)
1. Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae. Majumder R; Sutcliffe B; Taylor PW; Chapman TA Sci Rep; 2020 Oct; 10(1):16550. PubMed ID: 33024226 [TBL] [Abstract][Full Text] [Related]
2. Next-Generation Sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Majumder R; Sutcliffe B; Taylor PW; Chapman TA Sci Rep; 2019 Oct; 9(1):14292. PubMed ID: 31575966 [TBL] [Abstract][Full Text] [Related]
3. Microbiome of the Queensland Fruit Fly through Metamorphosis. Majumder R; Sutcliffe B; Taylor PW; Chapman TA Microorganisms; 2020 May; 8(6):. PubMed ID: 32466500 [No Abstract] [Full Text] [Related]
4. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Deutscher AT; Burke CM; Darling AE; Riegler M; Reynolds OL; Chapman TA Microbiome; 2018 May; 6(1):85. PubMed ID: 29729663 [TBL] [Abstract][Full Text] [Related]
5. Two Gut-Associated Yeasts in a Tephritid Fruit Fly have Contrasting Effects on Adult Attraction and Larval Survival. Piper AM; Farnier K; Linder T; Speight R; Cunningham JP J Chem Ecol; 2017 Sep; 43(9):891-901. PubMed ID: 28836040 [TBL] [Abstract][Full Text] [Related]
6. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota. Deutscher AT; Reynolds OL; Chapman TA J Econ Entomol; 2017 Feb; 110(1):298-300. PubMed ID: 28039426 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of the Queensland Fruit Fly Microbiome through the Transition from Nature to an Established Laboratory Colony. Majumder R; Taylor PW; Chapman TA Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208745 [TBL] [Abstract][Full Text] [Related]
8. Artificial Larval Diet Mediates the Microbiome of Queensland Fruit Fly. Majumder R; Sutcliffe B; Adnan SM; Mainali B; Dominiak BC; Taylor PW; Chapman TA Front Microbiol; 2020; 11():576156. PubMed ID: 33042092 [TBL] [Abstract][Full Text] [Related]
9. Commensal microbiota modulates larval foraging behaviour, development rate and pupal production in Bactrocera tryoni. Morimoto J; Nguyen B; Tabrizi ST; Lundbäck I; Taylor PW; Ponton F; Chapman TA BMC Microbiol; 2019 Dec; 19(Suppl 1):286. PubMed ID: 31870299 [TBL] [Abstract][Full Text] [Related]
10. The infection efficacy of Metarhizium strains (Hypocreales: Clavicipitaceae) against the Queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae). McGuire AV; Edwards W; Northfield ATD J Econ Entomol; 2023 Apr; 116(2):627-631. PubMed ID: 36888550 [TBL] [Abstract][Full Text] [Related]
11. Impact of Bactrocera oleae on the fungal microbiota of ripe olive drupes. Abdelfattah A; Ruano-Rosa D; Cacciola SO; Li Destri Nicosia MG; Schena L PLoS One; 2018; 13(11):e0199403. PubMed ID: 30496186 [TBL] [Abstract][Full Text] [Related]
12. Gut fungal community and its probiotic effect on Bactrocera dorsalis. Guo Q; Yao Z; Cai Z; Bai S; Zhang H Insect Sci; 2022 Aug; 29(4):1145-1158. PubMed ID: 34918476 [TBL] [Abstract][Full Text] [Related]
13. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sultana S; Baumgartner JB; Dominiak BC; Royer JE; Beaumont LJ Sci Rep; 2017 Oct; 7(1):13025. PubMed ID: 29026169 [TBL] [Abstract][Full Text] [Related]
14. Pathogenicity of Zygosaccharomyces bailii and Other Yeast Species to Mexican Fruit Fly (Diptera: Tephritidae) and Mass Rearing Implications. Salas B; Conway HE; Kunta M; Vacek D; Vitek C J Econ Entomol; 2018 Sep; 111(5):2081-2088. PubMed ID: 30053163 [TBL] [Abstract][Full Text] [Related]
15. Metarhizium spp. isolates effective against Queensland fruit fly juvenile life stages in soil. Prince M; McKinnon AC; Leemon D; Sawbridge T; Cunningham JP PLoS One; 2024; 19(1):e0297341. PubMed ID: 38236905 [TBL] [Abstract][Full Text] [Related]
16. The Microbiome of Field-Caught and Laboratory-Adapted Australian Tephritid Fruit Fly Species with Different Host Plant Use and Specialisation. Morrow JL; Frommer M; Shearman DC; Riegler M Microb Ecol; 2015 Aug; 70(2):498-508. PubMed ID: 25666536 [TBL] [Abstract][Full Text] [Related]
17. Diet and irradiation effects on the bacterial community composition and structure in the gut of domesticated teneral and mature Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). Woruba DN; Morrow JL; Reynolds OL; Chapman TA; Collins DP; Riegler M BMC Microbiol; 2019 Dec; 19(Suppl 1):281. PubMed ID: 31870300 [TBL] [Abstract][Full Text] [Related]
18. Variations in the Bacterial Communities in Anastrepha obliqua (Diptera: Tephritidae) According to the Insect Life Stage and Host Plant. Gallo-Franco JJ; Toro-Perea N Curr Microbiol; 2020 Jul; 77(7):1283-1291. PubMed ID: 32130504 [TBL] [Abstract][Full Text] [Related]
19. The ecology of the Drosophila-yeast mutualism in wineries. Quan AS; Eisen MB PLoS One; 2018; 13(5):e0196440. PubMed ID: 29768432 [TBL] [Abstract][Full Text] [Related]
20. Diversity of Fungal Communities on Diseased and Healthy Cinnamomum burmannii Fruits and Antibacterial Activity of Secondary Metabolites. Wang W; Cai T; Yang Y; Guo H; Shang Z; Shahid H; Zhang Y; Qiu S; Zeng X; Xu X; Liu Y; Fang P; Ding P; Mao Z; Shan T Microbiol Spectr; 2023 Jun; 11(3):e0008023. PubMed ID: 37162357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]