BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33024468)

  • 1. Optimal local impedance drops for an effective radiofrequency ablation during cavo-tricuspid isthmus ablation.
    Sasaki T; Nakamura K; Inoue M; Minami K; Miki Y; Goto K; Take Y; Kaseno K; Yamashita E; Koyama K; Naito S
    J Arrhythm; 2020 Oct; 36(5):905-911. PubMed ID: 33024468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local impedance measurements during contact force-guided cavotricuspid isthmus ablation for predicting an effective radiofrequency ablation.
    Sasaki T; Nakamura K; Minami K; Take Y; Nakatani Y; Miki Y; Goto K; Kaseno K; Yamashita E; Koyama K; Naito S
    J Arrhythm; 2022 Apr; 38(2):245-252. PubMed ID: 35387143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized radiofrequency lesions through local impedance guidance for effective CTI ablation in right atrial flutter.
    Ducceschi V; Zingarini G; Nigro G; Brasca FMA; Malacrida M; Carbone A; Lavalle C; Maglia G; Infusino T; Aloia A; Nicolis D; Auricchio C; Uccello A; Notaristefano F; Rago A; Botto GL; Esposito L
    Pacing Clin Electrophysiol; 2022 May; 45(5):612-618. PubMed ID: 35383979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local impedance and contact force guidance to predict successful cavotricuspid isthmus ablation with a zero-fluoroscopy approach.
    Melero-Polo J; Cabrera-Ramos M; Alfonso-Almazán JM; Marín-García I; Montilla-Padilla I; Ruiz-Arroyo JR; López-Rodríguez G; Ramos-Maqueda J
    Front Cardiovasc Med; 2023; 10():1322743. PubMed ID: 38239876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to avoid unnecessary RF applications in cavo-tricuspid isthmus: common atrial flutter ablation using 8-mm-tip mini-electrode-equipped catheter.
    Bińkowski BJ; Kucejko T; Łagodziński A; Lubiński A
    J Interv Card Electrophysiol; 2021 Jan; 60(1):109-114. PubMed ID: 32103404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Impedance Drop Predicts Durable Conduction Block in Patients With Paroxysmal Atrial Fibrillation.
    García-Bolao I; Ramos P; Luik A; S Sulkin M; R Gutbrod S; Oesterlein T; I Laughner J; Richards E; Meyer C; Yue A; Ullah W; Shepherd E; Das M
    JACC Clin Electrophysiol; 2022 May; 8(5):595-604. PubMed ID: 35589172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simplified differential pacing technique for the evaluation of bidirectional cavo-tricuspid isthmus block during ablation of typical atrial flutter.
    Katritsis DG; Chokesuwattanaskul R; Zografos T; Jame S; Paxinos G; Morady F
    J Interv Card Electrophysiol; 2022 Jan; 63(1):109-114. PubMed ID: 33550494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher power achieves greater local impedance drop, shorter ablation time, and more transmural lesion formation in comparison to lower power in local impedance guided radiofrequency ablation of atrial fibrillation.
    Yamashita S; Mizukami A; Ono M; Hiroki J; Miyakuni S; Ueshima D; Matsumura A; Miyazaki S; Sasano T
    J Cardiovasc Electrophysiol; 2023 Sep; 34(9):1869-1877. PubMed ID: 37529869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two catheters measuring local impedance: local impedance variation vs lesion characteristics and steam pops.
    Amemiya M; Takigawa M; Goya M; Martin CA; Anzai T; Takahashi K; Shimizu Y; Ikenouchi T; Kamata T; Yamamoto T; Nishimura T; Shirai Y; Tao S; Miyazaki S; Sasano T
    J Interv Card Electrophysiol; 2022 Nov; 65(2):419-428. PubMed ID: 35438394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical implications of local impedance measurement using the IntellaNav MiFi OI ablation catheter: an ex vivo study.
    Iwakawa H; Takigawa M; Goya M; Iwata T; Martin CA; Anzai T; Takahashi K; Amemiya M; Yamamoto T; Sekigawa M; Shirai Y; Tao S; Hayashi T; Takahashi Y; Watanabe H; Sasano T
    J Interv Card Electrophysiol; 2022 Jan; 63(1):185-195. PubMed ID: 33616879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between the P wave and local atrial electrogram in predicting conduction block during catheter ablation of cavo-tricuspid isthmus-dependent atrial flutter.
    Yokokawa M; Sinno MC; Saeed M; Latchamsetty R; Ghanbari H; Crawford T; Jongnarangsin K; Cunnane R; Pelosi F; Bogun F; Chugh A; Morady F; Oral H
    J Interv Card Electrophysiol; 2018 Nov; 53(2):187-193. PubMed ID: 29749578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping-guided ablation of the cavotricuspid isthmus: a novel simplified approach to radiofrequency catheter ablation of isthmus-dependent atrial flutter.
    Maruyama M; Kobayashi Y; Miyauchi Y; Iwasaki YK; Morita N; Miyamoto S; Tadera T; Ino T; Atarashi H; Katoh T; Takano T
    Heart Rhythm; 2006 Jun; 3(6):665-73. PubMed ID: 16731467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy and safety comparison between different types of novel design enhanced open-irrigated ablation catheters in creating cavo-tricuspid isthmus block.
    Hamaya R; Miyazaki S; Kajiyama T; Watanabe T; Kusa S; Nakamura H; Hachiya H; Iesaka Y
    J Cardiol; 2018 May; 71(5):513-516. PubMed ID: 29239758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unusual propagation pattern along the tricuspid annulus after cavo-tricuspid isthmus ablation: Insights into posterior transverse conduction revealed by an ultra-high-resolution 3-dimensional mapping system.
    Kanda T; Masuda M; Kurata N; Matsuda Y; Osamu I; Asai M; Mano T
    J Cardiol Cases; 2019 Mar; 19(3):101-105. PubMed ID: 30949251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictors of acute inefficacy and the radiofrequency energy time required for cavotricuspid isthmus-dependent atrial flutter ablation.
    Pérez-Rodon J; Rodriguez-García J; Sarrias-Merce A; Rivas-Gandara N; Roca-Luque I; Francisco-Pascual J; Santos-Ortega A; Martín-Sánchez G; Ferreira-González I; Rodríguez-Palomares J; Evangelista-Masip A; García-Dorado D; Moya-Mitjans À
    J Interv Card Electrophysiol; 2017 Jun; 49(1):83-91. PubMed ID: 28265782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reentry mechanisms and ablation of ECG-typical atrial flutters involving the cavo-tricuspid isthmus and the proximal coronary sinus.
    De Sisti A; Tonet J; Márquez MF; Amara W; Broustet H; Touil F; Hidden-Lucet F
    Int J Cardiol; 2013 Oct; 168(4):3728-35. PubMed ID: 23856445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local impedance-guided radiofrequency ablation with standard and high power: Results of a preclinical investigation.
    Osei K; Sulkin MS; Hamann JJ; Hughes C; Shuros A; Nagy T; Kapa S; Meyers J
    J Cardiovasc Electrophysiol; 2021 Aug; 32(8):2060-2068. PubMed ID: 34223691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety and durability of cavo-tricuspid isthmus linear ablation in the current era: Single-center 9-year experience from 1078 procedures.
    Kakehashi S; Miyazaki S; Hasegawa K; Nodera M; Mukai M; Aoyama D; Nagao M; Sekihara T; Eguchi T; Yamaguchi J; Shiomi Y; Tama N; Ikeda H; Ishida K; Uzui H; Tada H
    J Cardiovasc Electrophysiol; 2022 Jan; 33(1):40-45. PubMed ID: 34676946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological significance of the interatrial conduction including cavo-tricuspid isthmus during atrial fibrillation.
    Lim B; Park JW; Hwang M; Ryu AJ; Kim IS; Yu HT; Joung B; Shim EB; Pak HN
    J Physiol; 2020 Sep; 598(17):3597-3612. PubMed ID: 32495943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomic characterization of cavotricuspid isthmus by 3D transesophageal echocardiography in patients undergoing radiofrequency ablation of typical atrial flutter.
    Regoli F; Faletra F; Marcon S; Leo LA; Dequarti MC; Caputo ML; Conte G; Moccetti T; Auricchio A
    Eur Heart J Cardiovasc Imaging; 2018 Jan; 19(1):84-91. PubMed ID: 28180237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.