These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 33024693)

  • 1. Contra-Intuitive Features of Time-Domain Brillouin Scattering in Collinear Paraxial Sound and Light Beams.
    Gusev VE
    Photoacoustics; 2020 Dec; 20():100205. PubMed ID: 33024693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-domain Brillouin scattering theory for probe light and acoustic beams propagating at an angle and acousto-optic interaction at material interfaces.
    Gusev VE; Thréard T; Hurley DH; Raetz S
    Photoacoustics; 2023 Oct; 33():100563. PubMed ID: 37953941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersive coherent Brillouin scattering spectroscopy.
    Ishijima A; Okabe S; Sakuma I; Nakagawa K
    Photoacoustics; 2023 Feb; 29():100447. PubMed ID: 36601363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing sub-μm and μm-scale textures in H2O ice at megabar pressures by time-domain Brillouin scattering.
    Nikitin SM; Chigarev N; Tournat V; Bulou A; Gasteau D; Castagnede B; Zerr A; Gusev VE
    Sci Rep; 2015 Mar; 5():9352. PubMed ID: 25790808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical tracking of picosecond coherent phonon pulse focusing inside a sub-micron object.
    Dehoux T; Ishikawa K; Otsuka PH; Tomoda M; Matsuda O; Fujiwara M; Takeuchi S; Veres IA; Gusev VE; Wright OB
    Light Sci Appl; 2016 May; 5(5):e16082. PubMed ID: 30167166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sound velocity mapping from GHz Brillouin oscillations in transparent materials by optical incidence from the side of the sample.
    Tomoda M; Toda A; Matsuda O; Gusev VE; Wright OB
    Photoacoustics; 2023 Apr; 30():100459. PubMed ID: 36852340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picosecond laser ultrasonics for imaging of transparent polycrystalline materials compressed to megabar pressures.
    Kuriakose M; Raetz S; Chigarev N; Nikitin SM; Bulou A; Gasteau D; Tournat V; Castagnede B; Zerr A; Gusev VE
    Ultrasonics; 2016 Jul; 69():259-67. PubMed ID: 27026585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral narrowing in coherent Rayleigh-Brillouin scattering.
    Manteghi A; Dam NJ; Meijer AS; de Wijn AS; van de Water W
    Phys Rev Lett; 2011 Oct; 107(17):173903. PubMed ID: 22107519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tomographic reconstruction of picosecond acoustic strain pulses using automated angle-scan probing with visible light.
    Tomoda M; Matsuo H; Matsuda O; Li Voti R; Wright OB
    Photoacoustics; 2023 Dec; 34():100567. PubMed ID: 38027528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulated Brillouin Scattering in the Time Domain at 1  nm^{-1} Wave Vector.
    Fainozzi D; Foglia L; Khatu NN; Masciovecchio C; Mincigrucci R; Paltanin E; Bencivenga F
    Phys Rev Lett; 2024 Jan; 132(3):033802. PubMed ID: 38307074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Optical and Acoustical Properties of Ba
    Sandeep S; Raetz S; Wolfman J; Negulescu B; Liu G; Longuet JL; Thréard T; Gusev VE
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picosecond acoustic dynamics in stimulated Brillouin scattering.
    Piotrowski J; Schmidt MK; Stiller B; Poulton CG; Steel MJ
    Opt Lett; 2021 Jun; 46(12):2972-2975. PubMed ID: 34129587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection.
    Bao X; Zhou Z; Wang Y
    Photonix; 2021; 2(1):14. PubMed ID: 34841256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent Brillouin spectroscopy in a strongly scattering liquid by picosecond ultrasonics.
    Maznev AA; Manke KJ; Klieber C; Nelson KA; Baek SH; Eom CB
    Opt Lett; 2011 Aug; 36(15):2925-7. PubMed ID: 21808360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent attenuation by opto-acoustic defocus in phonon microscopy.
    Pérez-Cota F; La Cavera Iii S; Naznin S; Fuentes-Domínguez R; Smith RJ; Clark M
    Photoacoustics; 2020 Sep; 19():100180. PubMed ID: 32489857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of coherent acoustic beams in solids by mixing of counterpropagating, detuned optical beams [Invited].
    Laude V; Korotyaeva ME; Beugnot JC
    Appl Opt; 2018 Apr; 57(10):C77-C82. PubMed ID: 29714208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided acoustic-wave Brillouin scattering with optical pulses.
    Poustie AJ
    Opt Lett; 1992 Apr; 17(8):574-6. PubMed ID: 19794562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles and advances in ultrafast photoacoustics; applications to imaging cell mechanics and to probing cell nanostructure.
    Audoin B
    Photoacoustics; 2023 Jun; 31():100496. PubMed ID: 37159813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brillouin Oscillations from Single Au Nanoplate Opto-Acoustic Transducers.
    Yu K; Devkota T; Beane G; Wang GP; Hartland GV
    ACS Nano; 2017 Aug; 11(8):8064-8071. PubMed ID: 28651050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Phase-Shift Pulse Brillouin Optical Time-Domain Reflectometry.
    Horiguchi T; Masui Y; Zan MSD
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.