BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33024745)

  • 1. Radical Molecular Modulator for High-Performance Perovskite Solar Cells.
    Peng Q; Zheng X; Zhang X; You S; Li L; Zhao Y; Zhang S; Luo L; Zeng H; Li X
    Front Chem; 2020; 8():825. PubMed ID: 33024745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moisture-Resistant FAPbI
    Akman E; Shalan AE; Sadegh F; Akin S
    ChemSusChem; 2021 Feb; 14(4):1176-1183. PubMed ID: 33352009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable High-Performance Perovskite Solar Cells via Grain Boundary Passivation.
    Niu T; Lu J; Munir R; Li J; Barrit D; Zhang X; Hu H; Yang Z; Amassian A; Zhao K; Liu SF
    Adv Mater; 2018 Apr; 30(16):e1706576. PubMed ID: 29527750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and Stable Perovskite Solar Cells via CsPF
    Cai Q; Lin Z; Zhang W; Xu X; Dong H; Yuan S; Liang C; Mu C
    J Phys Chem Lett; 2022 May; 13(20):4598-4604. PubMed ID: 35584450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Efficiency of Air-Stable CsPbBr
    Zhang W; Liu X; He B; Zhu J; Li X; Shen K; Chen H; Duan Y; Tang Q
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36092-36101. PubMed ID: 32663398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells.
    Lee JW; Kim HS; Park NG
    Acc Chem Res; 2016 Feb; 49(2):311-9. PubMed ID: 26797391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells.
    Du B; He K; Zhao X; Li B
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells.
    Yang L; Li Y; Wang L; Pei Y; Wang Z; Zhang Y; Lin H; Li X
    ACS Appl Mater Interfaces; 2020 May; 12(20):22992-23001. PubMed ID: 32343556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids.
    Zhao L; Tang P; Luo D; Dar MI; Eickemeyer FT; Arora N; Hu Q; Luo J; Liu Y; Zakeeruddin SM; Hagfeldt A; Arbiol J; Huang W; Gong Q; Russell TP; Friend RH; Grätzel M; Zhu R
    Sci Adv; 2022 Sep; 8(35):eabo3733. PubMed ID: 36054361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect Passivation in Hybrid Perovskite Solar Cells by Tailoring the Electron Density Distribution in Passivation Molecules.
    Xin D; Tie S; Yuan R; Zheng X; Zhu J; Zhang WH
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44233-44240. PubMed ID: 31696708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passivation of the grain boundaries of CH
    Guo Q; Yuan F; Zhang B; Zhou S; Zhang J; Bai Y; Fan L; Hayat T; Alsaedi A; Tan Z
    Nanoscale; 2018 Dec; 11(1):115-124. PubMed ID: 30525161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots.
    Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
    Wang SY; Chen CP; Chung CL; Hsu CW; Hsu HL; Wu TH; Zhuang JY; Chang CJ; Chen HM; Chang YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40050-40061. PubMed ID: 31596062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells.
    Xu W; Zhu T; Wu H; Liu L; Gong X
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45045-45055. PubMed ID: 32915544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing Defect Passivation of the Grain Boundary with 2-Aminoterephthalic Acid for Efficient and Stable Perovskite Solar Cells.
    Liu Z; Cao F; Wang M; Wang M; Li L
    Angew Chem Int Ed Engl; 2020 Mar; 59(10):4161-4167. PubMed ID: 31867802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grain Boundary Defect Passivation of Triple Cation Mixed Halide Perovskite with Hydrazine-Based Aromatic Iodide for Efficiency Improvement.
    Rahman SI; Lamsal BS; Gurung A; Chowdhury AH; Reza KM; Ghimire N; Bahrami B; Luo W; Bobba RS; Pokharel J; Baniya A; Laskar AR; Emshadi K; Rahman MT; Qiao Q
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41312-41322. PubMed ID: 32829634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and Stable Perovskite Solar Cell Achieved with Bifunctional Interfacial Layers.
    Hou F; Shi B; Li T; Xin C; Ding Y; Wei C; Wang G; Li Y; Zhao Y; Zhang X
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25218-25226. PubMed ID: 31264840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building a Charge Transfer Bridge between g-C
    Wang Y; Zou J; Zhao C; Jiang H; Song Y; Zhang L; Li X; Wang F; Fan L; Liu X; Wei M; Yang L
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13815-13827. PubMed ID: 38442230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfonic Acid Functionalized Ionic Liquids for Defect Passivation via Molecular Interactions for High-Quality Perovskite Films and Stable Solar Cells.
    Fang J; Wang L; Chen Z; Wang S; Yuan L; Saeed A; Hussain I; Zhao J; Liu R; Miao Q
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38652094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondestructive Post-Treatment Enabled by
    Zhang D; Wang X; Fan Z; Xia X; Li F
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51053-51065. PubMed ID: 36322008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.