These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33025017)

  • 41. A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study.
    Homburg M; Meijer E; Berends M; Kupers T; Olde Hartman T; Muris J; de Schepper E; Velek P; Kuiper J; Berger M; Peters L
    J Med Internet Res; 2023 Oct; 25():e49944. PubMed ID: 37792444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH
    Am J Obstet Gynecol; 2022 Sep; 227(3):511.e1-511.e8. PubMed ID: 35430230
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mood instability is a common feature of mental health disorders and is associated with poor clinical outcomes.
    Patel R; Lloyd T; Jackson R; Ball M; Shetty H; Broadbent M; Geddes JR; Stewart R; McGuire P; Taylor M
    BMJ Open; 2015 May; 5(5):e007504. PubMed ID: 25998036
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A natural language processing approach for identifying temporal disease onset information from mental healthcare text.
    Viani N; Botelle R; Kerwin J; Yin L; Patel R; Stewart R; Velupillai S
    Sci Rep; 2021 Jan; 11(1):757. PubMed ID: 33436814
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Personalized Prediction of Psychosis: External Validation of the NAPLS-2 Psychosis Risk Calculator With the EDIPPP Project.
    Carrión RE; Cornblatt BA; Burton CZ; Tso IF; Auther AM; Adelsheim S; Calkins R; Carter CS; Niendam T; Sale TG; Taylor SF; McFarlane WR
    Am J Psychiatry; 2016 Oct; 173(10):989-996. PubMed ID: 27363511
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic prediction of psychological treatment outcomes: development and validation of a prediction model using routinely collected symptom data.
    Bone C; Simmonds-Buckley M; Thwaites R; Sandford D; Merzhvynska M; Rubel J; Deisenhofer AK; Lutz W; Delgadillo J
    Lancet Digit Health; 2021 Apr; 3(4):e231-e240. PubMed ID: 33766287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a natural language processing algorithm to detect chronic cough in electronic health records.
    Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D
    BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Short clinically-based prediction model to forecast transition to psychosis in individuals at clinical high risk state.
    Kotlicka-Antczak M; Karbownik MS; Stawiski K; Pawełczyk A; Żurner N; Pawełczyk T; Strzelecki D; Fusar-Poli P
    Eur Psychiatry; 2019 May; 58():72-79. PubMed ID: 30870626
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Implementation of a Real-Time Psychosis Risk Detection and Alerting System Based on Electronic Health Records using CogStack.
    Wang T; Oliver D; Msosa Y; Colling C; Spada G; Roguski Ł; Folarin A; Stewart R; Roberts A; Dobson RJB; Fusar-Poli P
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural Language Processing to Improve Prediction of Incident Atrial Fibrillation Using Electronic Health Records.
    Ashburner JM; Chang Y; Wang X; Khurshid S; Anderson CD; Dahal K; Weisenfeld D; Cai T; Liao KP; Wagholikar KB; Murphy SN; Atlas SJ; Lubitz SA; Singer DE
    J Am Heart Assoc; 2022 Aug; 11(15):e026014. PubMed ID: 35904194
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predicting the future risk of lung cancer: development, and internal and external validation of the CanPredict (lung) model in 19·67 million people and evaluation of model performance against seven other risk prediction models.
    Liao W; Coupland CAC; Burchardt J; Baldwin DR; ; Gleeson FV; Hippisley-Cox J
    Lancet Respir Med; 2023 Aug; 11(8):685-697. PubMed ID: 37030308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Text mining occupations from the mental health electronic health record: a natural language processing approach using records from the Clinical Record Interactive Search (CRIS) platform in south London, UK.
    Chilman N; Song X; Roberts A; Tolani E; Stewart R; Chui Z; Birnie K; Harber-Aschan L; Gazard B; Chandran D; Sanyal J; Hatch S; Kolliakou A; Das-Munshi J
    BMJ Open; 2021 Mar; 11(3):e042274. PubMed ID: 33766838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Admission to acute mental health services after contact with crisis resolution and home treatment teams: an investigation in two large mental health-care providers.
    Werbeloff N; Chang CK; Broadbent M; Hayes JF; Stewart R; Osborn DPJ
    Lancet Psychiatry; 2017 Jan; 4(1):49-56. PubMed ID: 27979719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Information Extraction From Electronic Health Records to Predict Readmission Following Acute Myocardial Infarction: Does Natural Language Processing Using Clinical Notes Improve Prediction of Readmission?
    Brown JR; Ricket IM; Reeves RM; Shah RU; Goodrich CA; Gobbel G; Stabler ME; Perkins AM; Minter F; Cox KC; Dorn C; Denton J; Bray BE; Gouripeddi R; Higgins J; Chapman WW; MacKenzie T; Matheny ME
    J Am Heart Assoc; 2022 Apr; 11(7):e024198. PubMed ID: 35322668
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of Natural Language Processing to Improve Identification of Patients With Peripheral Artery Disease.
    Weissler EH; Zhang J; Lippmann S; Rusincovitch S; Henao R; Jones WS
    Circ Cardiovasc Interv; 2020 Oct; 13(10):e009447. PubMed ID: 33040585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A method for cohort selection of cardiovascular disease records from an electronic health record system.
    Abrahão MTF; Nobre MRC; Gutierrez MA
    Int J Med Inform; 2017 Jun; 102():138-149. PubMed ID: 28495342
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Negative symptoms in schizophrenia: a study in a large clinical sample of patients using a novel automated method.
    Patel R; Jayatilleke N; Broadbent M; Chang CK; Foskett N; Gorrell G; Hayes RD; Jackson R; Johnston C; Shetty H; Roberts A; McGuire P; Stewart R
    BMJ Open; 2015 Sep; 5(9):e007619. PubMed ID: 26346872
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigating the relationship between thought interference, somatic passivity and outcomes in patients with psychosis: a natural language processing approach using a clinical records search platform in south London.
    Magrangeas TT; Kolliakou A; Sanyal J; Patel R; Stewart R
    BMJ Open; 2022 Aug; 12(8):e057433. PubMed ID: 35918110
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inpatient use and area-level socio-environmental factors in people with psychosis.
    Heslin M; Khondoker M; Shetty H; Pritchard M; Jones PB; Osborn D; Kirkbride JB; Roberts A; Stewart R
    Soc Psychiatry Psychiatr Epidemiol; 2018 Oct; 53(10):1133-1140. PubMed ID: 29796850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.