These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3302505)

  • 21. [Renal circulation in acute nephrotoxic renal failure].
    Sudo M; Iguma K; Kobayashi S; Yonemura K; Honda N
    Nihon Jinzo Gakkai Shi; 1983 Jul; 25(7):802-5. PubMed ID: 6663843
    [No Abstract]   [Full Text] [Related]  

  • 22. Acute kidney injury in sepsis: is renal blood flow more than just an innocent bystander?
    Matejovic M; Radermacher P; Joannidis M
    Intensive Care Med; 2007 Sep; 33(9):1498-500. PubMed ID: 17572878
    [No Abstract]   [Full Text] [Related]  

  • 23. Hepatocyte growth factor may function as a renotropic factor for regeneration in rats with acute renal injury.
    Igawa T; Matsumoto K; Kanda S; Saito Y; Nakamura T
    Am J Physiol; 1993 Jul; 265(1 Pt 2):F61-9. PubMed ID: 8342615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alteration of microvascular permeability in acute kidney injury.
    Sutton TA
    Microvasc Res; 2009 Jan; 77(1):4-7. PubMed ID: 18938184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endogenous EGF as a potential renotrophic factor in ischemia-induced acute renal failure.
    Schaudies RP; Nonclercq D; Nelson L; Toubeau G; Zanen J; Heuson-Stiennon JA; Laurent G
    Am J Physiol; 1993 Sep; 265(3 Pt 2):F425-34. PubMed ID: 8214102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental models of acute renal failure.
    Olbricht CH
    Contrib Nephrol; 1980; 19():110-23. PubMed ID: 7379529
    [No Abstract]   [Full Text] [Related]  

  • 27. Early renal pathophysiology in an acute model of cyclosporine nephrotoxicity in rats.
    Racusen LC; Kone BC; Solez K
    Ren Fail; 1987; 10(1):29-37. PubMed ID: 3823505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Systemic hemodynamics and renal blood flow in glycerol induced acute renal failure].
    Ohyama A
    Nihon Jinzo Gakkai Shi; 1993 Sep; 35(9):1023-32. PubMed ID: 8230812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tales from the deep: reeling in renal failure.
    Bahary N
    Am J Physiol Renal Physiol; 2005 May; 288(5):F921-2. PubMed ID: 15821256
    [No Abstract]   [Full Text] [Related]  

  • 30. Role of intratubular pressure during the ischemic phase in acute kidney injury.
    Wei J; Song J; Jiang S; Zhang G; Wheeler D; Zhang J; Wang S; Lai EY; Wang L; Buggs J; Liu R
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F1158-F1165. PubMed ID: 28579560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurohormonal interactions on the renal oxygen delivery and consumption in haemorrhagic shock-induced acute kidney injury.
    Hultström M
    Acta Physiol (Oxf); 2013 Sep; 209(1):11-25. PubMed ID: 23837642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacokinetic changes of cefdinir and cefditoren and its molecular mechanisms in acute kidney injury in rats.
    Wang H; Sun P; Wang C; Meng Q; Liu Z; Huo X; Sun H; Ma X; Peng J; Liu K
    J Pharm Pharmacol; 2018 Nov; 70(11):1503-1512. PubMed ID: 30047127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Systemic hemodynamics in glycerol-induced acute renal failure in the rats].
    Nakatani T; Sakamoto W; Kishimoto T; Maekawa M
    Nihon Jinzo Gakkai Shi; 1984 Aug; 26(8):1119-29. PubMed ID: 6513183
    [No Abstract]   [Full Text] [Related]  

  • 34. Acute renal failure in the 1980s: the importance of septic shock and of endotoxaemia.
    Wardle N
    Nephron; 1982; 30(3):193-200. PubMed ID: 7048115
    [No Abstract]   [Full Text] [Related]  

  • 35. Regional haemodynamic effects of dopamine and its prodrugs L-dopa and gludopa in the rat and in the glycerol-treated rat as a model for acute renal failure.
    Drieman JC; van Kan FJ; Thijssen HH; van Essen H; Smits JF; Struijker Boudier HA
    Br J Pharmacol; 1994 Apr; 111(4):1117-22. PubMed ID: 8032598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precocious obesity predisposes the development of more severe cisplatin-induced acute kidney injury in young adult mice.
    Ribeiro RS; Passos CS; Novaes AS; Maquigussa E; Glória MA; Visoná I; Ykuta O; Oyama LM; Boim MA
    PLoS One; 2017; 12(3):e0174721. PubMed ID: 28358868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of indoxyl sulfate in renal and central nervous system toxicities during cisplatin-induced acute renal failure.
    Iwata K; Watanabe H; Morisaki T; Matsuzaki T; Ohmura T; Hamada A; Saito H
    Pharm Res; 2007 Apr; 24(4):662-71. PubMed ID: 17318420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of ischaemia-reperfusion-induced acute kidney injury by clamping renal arteries, veins or pedicles in anaesthetized rats.
    Owji SM; Nikeghbal E; Moosavi SM
    Exp Physiol; 2018 Oct; 103(10):1390-1402. PubMed ID: 30091805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A clinical insight into the pathophysiology of drug-induced acute renal failure.
    Minetti L; Galato R; Radaelli L; Rovati C; Seveso M
    Adv Exp Med Biol; 1987; 212():115-23. PubMed ID: 3618351
    [No Abstract]   [Full Text] [Related]  

  • 40. Impaired renal blood flow and the 'spicy food' hypothesis of acute kidney injury.
    Kellum JA
    Crit Care Med; 2011 Apr; 39(4):901-3. PubMed ID: 21613846
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.