These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33025278)

  • 21. Modeling cell proliferation for simulating three-dimensional tissue morphogenesis based on a reversible network reconnection framework.
    Okuda S; Inoue Y; Eiraku M; Sasai Y; Adachi T
    Biomech Model Mechanobiol; 2013 Oct; 12(5):987-96. PubMed ID: 23196700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth.
    Chaplain MA; Ganesh M; Graham IG
    J Math Biol; 2001 May; 42(5):387-423. PubMed ID: 11419617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling cell population dynamics.
    Charlebois DA; Balázsi G
    In Silico Biol; 2019; 13(1-2):21-39. PubMed ID: 30562900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of cell-substrate traction force dynamics in response to soluble factors.
    Liu T
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1255-1268. PubMed ID: 28224240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational approaches to cellular rhythms.
    Goldbeter A
    Nature; 2002 Nov; 420(6912):238-45. PubMed ID: 12432409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implementing vertex dynamics models of cell populations in biology within a consistent computational framework.
    Fletcher AG; Osborne JM; Maini PK; Gavaghan DJ
    Prog Biophys Mol Biol; 2013 Nov; 113(2):299-326. PubMed ID: 24120733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physical models of plant development.
    Ali O; Mirabet V; Godin C; Traas J
    Annu Rev Cell Dev Biol; 2014; 30():59-78. PubMed ID: 25000996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling cell apoptosis for simulating three-dimensional multicellular morphogenesis based on a reversible network reconnection framework.
    Okuda S; Inoue Y; Eiraku M; Adachi T; Sasai Y
    Biomech Model Mechanobiol; 2016 Aug; 15(4):805-16. PubMed ID: 26361766
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incompressible limit of a continuum model of tissue growth with segregation for two cell populations.
    Chertock A; Degond P; Hecht S; Vincent JP
    Math Biosci Eng; 2019 Jun; 16(5):5804-5835. PubMed ID: 31499739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational investigation of intrinsic and extrinsic mechanisms underlying the formation of carcinoma.
    Rejniak KA; Quaranta V; Anderson AR
    Math Med Biol; 2012 Mar; 29(1):67-84. PubMed ID: 21106672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chaste: Cancer, Heart and Soft Tissue Environment.
    Cooper FR; Baker RE; Bernabeu MO; Bordas R; Bowler L; Bueno-Orovio A; Byrne HM; Carapella V; Cardone-Noott L; Jonatha C; Dutta S; Evans BD; Fletcher AG; Grogan JA; Guo W; Harvey DG; Hendrix M; Kay D; Kursawe J; Maini PK; McMillan B; Mirams GR; Osborne JM; Pathmanathan P; Pitt-Francis JM; Robinson M; Rodriguez B; Spiteri RJ; Gavaghan DJ
    J Open Source Softw; 2020 Mar; 5(47):1848. PubMed ID: 37192932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Modelling of Cancer Development and Growth: Modelling at Multiple Scales and Multiscale Modelling.
    Szymańska Z; Cytowski M; Mitchell E; Macnamara CK; Chaplain MAJ
    Bull Math Biol; 2018 May; 80(5):1366-1403. PubMed ID: 28634857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A quantitative high-resolution computational mechanics cell model for growing and regenerating tissues.
    Van Liedekerke P; Neitsch J; Johann T; Warmt E; Gonzàlez-Valverde I; Hoehme S; Grosser S; Kaes J; Drasdo D
    Biomech Model Mechanobiol; 2020 Feb; 19(1):189-220. PubMed ID: 31749071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiscale Hy3S: hybrid stochastic simulation for supercomputers.
    Salis H; Sotiropoulos V; Kaznessis YN
    BMC Bioinformatics; 2006 Feb; 7():93. PubMed ID: 16504125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An immersed boundary method for simulating a single axisymmetric cell growth and division.
    Li Y; Yun A; Kim J
    J Math Biol; 2012 Oct; 65(4):653-75. PubMed ID: 21987086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PyOIF: Computational tool for modelling of multi-cell flows in complex geometries.
    Jančigová I; Kovalčíková K; Weeber R; Cimrák I
    PLoS Comput Biol; 2020 Oct; 16(10):e1008249. PubMed ID: 33075044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids.
    Chen CY; Byrne HM; King JR
    J Math Biol; 2001 Sep; 43(3):191-220. PubMed ID: 11681526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamically-motivated chemo-mechanical models and multicellular simulation to provide new insight into active cell and tumour remodelling.
    Senthilkumar I; Howley E; McEvoy E
    Exp Cell Res; 2022 Oct; 419(2):113317. PubMed ID: 36028058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the modelling of biological patterns with mechanochemical models: Insights from analysis and computation.
    Moreo P; Gaffney EA; García-Aznar JM; Doblaré M
    Bull Math Biol; 2010 Feb; 72(2):400-31. PubMed ID: 19915925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids.
    Lejeune E; Linder C
    Biomech Model Mechanobiol; 2018 Jun; 17(3):727-743. PubMed ID: 29197990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.