BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33025366)

  • 1. Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set using Robotics Video and Motion Assessment Software.
    Lefor AK; Harada K; Dosis A; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2020 Dec; 15(12):2017-2025. PubMed ID: 33025366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion analysis of the JHU-ISI Gesture and Skill Assessment Working Set II: learning curve analysis.
    Lefor AK; Harada K; Dosis A; Mitsuishi M
    Int J Comput Assist Radiol Surg; 2021 Apr; 16(4):589-595. PubMed ID: 33723706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endoscopic Image-Based Skill Assessment in Robot-Assisted Minimally Invasive Surgery.
    Lajkó G; Nagyné Elek R; Haidegger T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated surgical skill assessment in RMIS training.
    Zia A; Essa I
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):731-739. PubMed ID: 29549553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery.
    Wang Z; Majewicz Fey A
    Int J Comput Assist Radiol Surg; 2018 Dec; 13(12):1959-1970. PubMed ID: 30255463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-Level vs. Segment-Level Quantitative Metrics for Surgical Skill Assessment.
    Vedula SS; Malpani A; Ahmidi N; Khudanpur S; Hager G; Chen CC
    J Surg Educ; 2016; 73(3):482-9. PubMed ID: 26896147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a technical checklist for the assessment of suturing in robotic surgery.
    Guni A; Raison N; Challacombe B; Khan S; Dasgupta P; Ahmed K
    Surg Endosc; 2018 Nov; 32(11):4402-4407. PubMed ID: 30194643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical skill levels: Classification and analysis using deep neural network model and motion signals.
    Nguyen XA; Ljuhar D; Pacilli M; Nataraja RM; Chauhan S
    Comput Methods Programs Biomed; 2019 Aug; 177():1-8. PubMed ID: 31319938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of executional and procedural errors in dry-lab robotic surgery experiments.
    Hutchinson K; Li Z; Cantrell LA; Schenkman NS; Alemzadeh H
    Int J Med Robot; 2022 Jun; 18(3):e2375. PubMed ID: 35114732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracorporal knot tying techniques - which is the right one?
    Romero P; Nickel F; Mantel M; Frongia G; Rossler A; Kowalewski KF; Müller-Stich BP; Günther P
    J Pediatr Surg; 2017 Apr; 52(4):633-638. PubMed ID: 28017412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon.
    Kowalewski KF; Hendrie JD; Schmidt MW; Garrow CR; Bruckner T; Proctor T; Paul S; Adigüzel D; Bodenstedt S; Erben A; Kenngott H; Erben Y; Speidel S; Müller-Stich BP; Nickel F
    Surg Endosc; 2017 May; 31(5):2155-2165. PubMed ID: 27604368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Educational Role for an Advanced Suturing Task in the Pediatric Laparoscopic Surgery Simulator.
    Trudeau MO; Carrillo B; Nasr A; Gerstle JT; Azzie G
    J Laparoendosc Adv Surg Tech A; 2017 Apr; 27(4):441-446. PubMed ID: 28328281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of laparoscopic and robotic assisted suturing performance by experts and novices.
    Chandra V; Nehra D; Parent R; Woo R; Reyes R; Hernandez-Boussard T; Dutta S
    Surgery; 2010 Jun; 147(6):830-9. PubMed ID: 20045162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Objective assessment for open surgical suturing training by finger tracking can discriminate novices from experts.
    Hillemans V; van de Mortel X; Buyne O; Verhoeven BH; Botden SMBI
    Med Educ Online; 2023 Dec; 28(1):2198818. PubMed ID: 37013910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion control skill assessment based on kinematic analysis of robotic end-effector movements.
    Liang K; Xing Y; Li J; Wang S; Li A; Li J
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28660644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing an Objective Structured Assessment of Technical Skills for Laparoscopic Suturing and Intracorporeal Knot Tying.
    Chang OH; King LP; Modest AM; Hur HC
    J Surg Educ; 2016; 73(2):258-63. PubMed ID: 26597729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dataset and Benchmarks for Segmentation and Recognition of Gestures in Robotic Surgery.
    Ahmidi N; Tao L; Sefati S; Gao Y; Lea C; Haro BB; Zappella L; Khudanpur S; Vidal R; Hager GD
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2025-2041. PubMed ID: 28060703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic Surgical Skill Retention: Can Patriot Motion Tracking System Provide an Objective Measurement for it?
    Shaharan S; Nugent E; Ryan DM; Traynor O; Neary P; Buckley D
    J Surg Educ; 2016; 73(2):245-9. PubMed ID: 26572096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Teaching suturing and knot-tying skills to medical students: a randomized controlled study comparing computer-based video instruction and (concurrent and summary) expert feedback.
    Xeroulis GJ; Park J; Moulton CA; Reznick RK; Leblanc V; Dubrowski A
    Surgery; 2007 Apr; 141(4):442-9. PubMed ID: 17383520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of motion in laparoscopy: the deconstruction of an intra-corporeal suturing task.
    Farcas MA; Trudeau MO; Nasr A; Gerstle JT; Carrillo B; Azzie G
    Surg Endosc; 2017 Aug; 31(8):3130-3139. PubMed ID: 27928669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.