These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33025770)

  • 1. A Machine Learning-Assisted Nanoparticle-Printed Biochip for Real-Time Single Cancer Cell Analysis.
    Joshi K; Javani A; Park J; Velasco V; Xu B; Razorenova O; Esfandyarpour R
    Adv Biosyst; 2020 Nov; 4(11):e2000160. PubMed ID: 33025770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis.
    Esfandyarpour R; DiDonato MJ; Yang Y; Durmus NG; Harris JS; Davis RW
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):E1306-E1315. PubMed ID: 28167769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level.
    Labib M; Philpott DN; Wang Z; Nemr C; Chen JB; Sargent EH; Kelley SO
    Acc Chem Res; 2020 Aug; 53(8):1445-1457. PubMed ID: 32662263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Low-Cost, Disposable and Portable Inkjet-Printed Biochip for the Developing World.
    Joshi K; Velasco V; Esfandyarpour R
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data.
    Hu Y; Hase T; Li HP; Prabhakar S; Kitano H; Ng SK; Ghosh S; Wee LJ
    BMC Genomics; 2016 Dec; 17(Suppl 13):1025. PubMed ID: 28155657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native State Single-Cell Printing System and Analysis for Matrix Effects.
    Li Q; Tang F; Huo X; Huang X; Zhang Y; Wang X; Zhang X
    Anal Chem; 2019 Jul; 91(13):8115-8122. PubMed ID: 31149815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inkjet-Printing Patterned Chip on Sticky Superhydrophobic Surface for High-Efficiency Single-Cell Array Trapping and Real-Time Observation of Cellular Apoptosis.
    Sun Y; Song W; Sun X; Zhang S
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31054-31060. PubMed ID: 30148358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lab-on-a-Chip Platforms for Biophysical Studies of Cancer with Single-Cell Resolution.
    Shukla VC; Kuang TR; Senthilvelan A; Higuita-Castro N; Duarte-Sanmiguel S; Ghadiali SN; Gallego-Perez D
    Trends Biotechnol; 2018 May; 36(5):549-561. PubMed ID: 29559164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Platform for Parallel Single Cell Analysis for Diagnostic Applications.
    Le Gac S
    Methods Mol Biol; 2017; 1547():187-209. PubMed ID: 28044297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Microfluidics-Based Technologies for Single Cell Culture.
    García Alonso D; Yu M; Qu H; Ma L; Shen F
    Adv Biosyst; 2019 Nov; 3(11):e1900003. PubMed ID: 32648694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of inkjet-printed single cells to quantify intratumoral heterogeneity.
    Yoon WH; Lee HR; Kim S; Kim E; Ku JH; Shin K; Jung S
    Biofabrication; 2020 Jul; 12(3):035030. PubMed ID: 32428886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell printer: automated, on demand, and label free.
    Gross A; Schöndube J; Niekrawitz S; Streule W; Riegger L; Zengerle R; Koltay P
    J Lab Autom; 2013 Dec; 18(6):504-18. PubMed ID: 24222537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time assessment of nanoparticle-mediated antigen delivery and cell response.
    Cunha-Matos CA; Millington OR; Wark AW; Zagnoni M
    Lab Chip; 2016 Aug; 16(17):3374-81. PubMed ID: 27455884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning based classification of cells into chronological stages using single-cell transcriptomics.
    Singh SP; Janjuha S; Chaudhuri S; Reinhardt S; Kränkel A; Dietz S; Eugster A; Bilgin H; Korkmaz S; Zararsız G; Ninov N; Reid JE
    Sci Rep; 2018 Nov; 8(1):17156. PubMed ID: 30464314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Analysis Using Machine Learning Techniques and Its Application to Medical Research.
    Asada K; Takasawa K; Machino H; Takahashi S; Shinkai N; Bolatkan A; Kobayashi K; Komatsu M; Kaneko S; Okamoto K; Hamamoto R
    Biomedicines; 2021 Oct; 9(11):. PubMed ID: 34829742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of single-cell arrays and assay of cell drug resistance in an integrated microfluidic platform.
    Pang L; Liu W; Tian C; Xu J; Li T; Chen SW; Wang J
    Lab Chip; 2016 Nov; 16(23):4612-4620. PubMed ID: 27785515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI on a chip.
    Isozaki A; Harmon J; Zhou Y; Li S; Nakagawa Y; Hayashi M; Mikami H; Lei C; Goda K
    Lab Chip; 2020 Aug; 20(17):3074-3090. PubMed ID: 32644061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.
    Mitra AK; Mukherjee UK; Harding T; Jang JS; Stessman H; Li Y; Abyzov A; Jen J; Kumar S; Rajkumar V; Van Ness B
    Leukemia; 2016 May; 30(5):1094-102. PubMed ID: 26710886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.
    Guo B; Lei C; Kobayashi H; Ito T; Yalikun Y; Jiang Y; Tanaka Y; Ozeki Y; Goda K
    Cytometry A; 2017 May; 91(5):494-502. PubMed ID: 28399328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.