These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33025983)

  • 1. Structural surface and thermodynamics analysis of nanoparticles with defects.
    Gavilán-Arriazu EM; Giménez RE; Pinto OA
    Phys Chem Chem Phys; 2020 Oct; 22(40):23148-23157. PubMed ID: 33025983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption on nanoparticles with surface defects: mean field and energy level approaches.
    Pasinetti PM; Pena-Ausar JE; Pinto OA
    Phys Chem Chem Phys; 2024 Apr; 26(15):11815-11824. PubMed ID: 38566611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer simulation of adsorption on nanoparticles: the case of attractive interactions.
    Pinto OA; López de Mishima BA; Leiva EP; Oviedo OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061602. PubMed ID: 23367959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface charging behavior of nanoparticles by considering site distribution and density, dielectric constant and pH changes--a Monte Carlo approach.
    Clavier A; Seijo M; Carnal F; Stoll S
    Phys Chem Chem Phys; 2015 Feb; 17(6):4346-53. PubMed ID: 25579770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemistry of cysteine assembly on Au(100): electrochemistry, in situ STM and molecular modeling.
    Engelbrekt C; Nazmutdinov RR; Zinkicheva TT; Glukhov DV; Yan J; Mao B; Ulstrup J; Zhang J
    Nanoscale; 2019 Sep; 11(37):17235-17251. PubMed ID: 31418761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical approach to energy levels applied to modified surfaces.
    Pena-Ausar JE; Pinto OA
    Phys Chem Chem Phys; 2022 May; 24(20):12592-12600. PubMed ID: 35579353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and structural properties of mixed colloids represented by a hard-core two-Yukawa mixture model fluid: Monte Carlo simulations and an analytical theory.
    Yu YX; Jin L
    J Chem Phys; 2008 Jan; 128(1):014901. PubMed ID: 18190220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles.
    Martínez-Rovira I; Prezado Y
    Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monomolecular adsorption on nanoparticles with repulsive interactions: a Monte Carlo study.
    Pinto OA; López de Mishima BA; Leiva EP; Oviedo OA
    Phys Chem Chem Phys; 2016 Jun; 18(21):14610-8. PubMed ID: 27181601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of Monte Carlo microdosimetric computations on the simulation geometry of gold nanoparticles.
    Zygmanski P; Liu B; Tsiamas P; Cifter F; Petersheim M; Hesser J; Sajo E
    Phys Med Biol; 2013 Nov; 58(22):7961-77. PubMed ID: 24169737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory.
    Cimino RT; Kowalczyk P; Ravikovitch PI; Neimark AV
    Langmuir; 2017 Feb; 33(8):1769-1779. PubMed ID: 28135415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reference interaction site model and molecular dynamics study of structure and thermodynamics of methanol.
    Costa D; Munaó G; Saija F; Caccamo C
    J Chem Phys; 2007 Dec; 127(22):224501. PubMed ID: 18081400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation and free energies of mixed oxide nanoparticles.
    Purton JA; Parker SC; Allan NL
    Phys Chem Chem Phys; 2013 May; 15(17):6219-25. PubMed ID: 23515460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond Magic Numbers: Atomic Scale Equilibrium Nanoparticle Shapes for Any Size.
    Rahm JM; Erhart P
    Nano Lett; 2017 Sep; 17(9):5775-5781. PubMed ID: 28792765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulations of water and paracresol in MFI zeolite--a Monte Carlo study.
    Narasimhan L; Boulet P; Kuchta B; Schaef O; Denoyel R; Brunet P
    Langmuir; 2009 Oct; 25(19):11598-607. PubMed ID: 19711959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective homopolymer adsorption on structured surfaces as a model for pattern recognition.
    Gemünden P; Behringer H
    J Chem Phys; 2013 Jan; 138(2):024904. PubMed ID: 23320718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral nanopatterned surfaces as versatile enantiospecific adsorbents: a Monte Carlo model.
    Szabelski P
    J Chem Phys; 2008 May; 128(18):184702. PubMed ID: 18532831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and thermodynamics of protein-polymer solutions: effects of spatially distributed hydrophobic surface residues.
    Jönsson M; Linse P
    J Phys Chem B; 2005 Aug; 109(31):15107-17. PubMed ID: 16852912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation and detailed mean-field approximation applied to adsorption on nanoparticles.
    Pinto OA; López de Mishima B; Dávila M; Ramirez-Pastor AJ; Leiva EP; Oviedo OA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062407. PubMed ID: 24483461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.