These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33026006)

  • 1. The phase-change evolution from surface to bulk of MnO anodes upon cycling.
    Chang L; Liu D; Zhou T; Hu M; Wang Y; Ge S; He J; Li C; An C
    Nanoscale; 2020 Oct; 12(39):20425-20431. PubMed ID: 33026006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design of Graphene-Reinforced MnO Nanowires with Enhanced Electrochemical Performance for Li-Ion Batteries.
    Sun Q; Wang Z; Zhang Z; Yu Q; Qu Y; Zhang J; Yu Y; Xiang B
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6303-8. PubMed ID: 26894410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of crystal plane selectivity for irreversible phase transition in MnO@C anode.
    Zhou T; Chang L; Li W; Li C; Yuan W; An C; Luo J
    Chem Commun (Camb); 2020 Apr; 56(26):3753-3756. PubMed ID: 32125332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic resolution observation of conversion-type anode RuO₂ during the first electrochemical lithiation.
    Mao M; Nie A; Liu J; Wang H; Mao SX; Wang Q; Li K; Zhang XX
    Nanotechnology; 2015 Mar; 26(12):125404. PubMed ID: 25742426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embedding MnO@Mn
    Chu Y; Guo L; Xi B; Feng Z; Wu F; Lin Y; Liu J; Sun D; Feng J; Qian Y; Xiong S
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29271501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Superassembly of Grape-Like MnO-Ni@C Frameworks for Superior Lithium Storage.
    Hou C; Wang J; Zhang W; Li J; Zhang R; Zhou J; Fan Y; Li D; Dang F; Liu J; Li Y; Liang K; Kong B
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13770-13780. PubMed ID: 32096974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.
    Zheng F; Xia G; Yang Y; Chen Q
    Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MnO Nanoparticles Supported by Carbonized Cotton Fiber Foil as a Free-Standing Anode for High-Performance Lithium Ion Batteries.
    Zheng Z; Cui D; Pei Y; Zhang F; Yuan L
    Chempluschem; 2019 Feb; 84(2):166-174. PubMed ID: 31950699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Oleate Complex-Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance.
    Cao Y; Geng K; Geng H; Ang H; Pei J; Liu Y; Cao X; Zheng J; Gu H
    Nanomicro Lett; 2019 Feb; 11(1):15. PubMed ID: 34137982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries.
    Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y
    Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired Architectures and Heteroatom Doping To Construct Metal-Oxide-Based Anode for High-Performance Lithium-Ion Batteries.
    Sun Q; Zhou L; Sun L; Wang C; Wu Y; Wang X; Wang L; Ming J
    Chemistry; 2018 Nov; 24(63):16902-16909. PubMed ID: 30204956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Li₂MnO₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery.
    Wang D; Zhao Y; Xu X; Hercule KM; Yan M; An Q; Tian X; Xu J; Qu L; Mai L
    Nanoscale; 2014 Jul; 6(14):8124-9. PubMed ID: 24921199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Preparation of Porous MnO/C Microspheres as Anode Materials for Lithium-Ion Batteries.
    Su J; Liang H; Gong XN; Lv XY; Long YF; Wen YX
    Nanomaterials (Basel); 2017 May; 7(6):. PubMed ID: 28587120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Electrochemical Properties of Pomegranate-Shaped Fe
    Wang Z; Zhang X; Zhao Y; Li M; Tan T; Tan M; Zhao Z; Ke C; Qin C; Chen Z; Wang Y
    Nanoscale Res Lett; 2018 Oct; 13(1):344. PubMed ID: 30377858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MnO Conversion in Li-Ion Batteries: In Situ Studies and the Role of Mesostructuring.
    Butala MM; Danks KR; Lumley MA; Zhou S; Melot BC; Seshadri R
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6496-503. PubMed ID: 26881741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries.
    Zhao Y; Ye Y; Wu F; Li Y; Li L; Chen R
    Adv Mater; 2019 Mar; 31(12):e1806532. PubMed ID: 30672032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.