These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Self-propelled Leidenfrost droplets on a heated glycerol pool. Matsumoto R; Hasegawa K Sci Rep; 2021 Feb; 11(1):3954. PubMed ID: 33597605 [TBL] [Abstract][Full Text] [Related]
4. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature. Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835 [TBL] [Abstract][Full Text] [Related]
6. Self-Propulsion of Boiling Droplets on Thin Heated Oil Films. Leon VJ; Varanasi KK Phys Rev Lett; 2021 Aug; 127(7):074502. PubMed ID: 34459655 [TBL] [Abstract][Full Text] [Related]
7. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets. Ok JT; Choi J; Brown E; Park S Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527 [TBL] [Abstract][Full Text] [Related]
8. One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets. Liu C; Sun K; Lu C; Su J; Han L; Wang Z; Liu Y J Colloid Interface Sci; 2020 Jun; 569():229-234. PubMed ID: 32113020 [TBL] [Abstract][Full Text] [Related]
10. Final fate of a Leidenfrost droplet: Explosion or takeoff. Lyu S; Mathai V; Wang Y; Sobac B; Colinet P; Lohse D; Sun C Sci Adv; 2019 May; 5(5):eaav8081. PubMed ID: 31058224 [TBL] [Abstract][Full Text] [Related]
11. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces. Li Q; Kang QJ; Francois MM; Hu AJ Soft Matter; 2016 Jan; 12(1):302-12. PubMed ID: 26467921 [TBL] [Abstract][Full Text] [Related]
12. Rectification of Mobile Leidenfrost Droplets by Planar Ratchets. Li J; Zhou X; Zhang Y; Hao C; Zhao F; Li M; Tang H; Ye W; Wang Z Small; 2020 Mar; 16(9):e1901751. PubMed ID: 31231945 [TBL] [Abstract][Full Text] [Related]
13. The nanoscale Leidenfrost effect. Rodrigues J; Desai S Nanoscale; 2019 Jul; 11(25):12139-12151. PubMed ID: 31192326 [TBL] [Abstract][Full Text] [Related]
14. Leidenfrost droplet jet engine by bubble ejection. Lin Y; Wu X; Hu Z; Chu F J Colloid Interface Sci; 2023 Nov; 650(Pt A):112-120. PubMed ID: 37399747 [TBL] [Abstract][Full Text] [Related]
15. Delayed Leidenfrost Effect of a Cutting Droplet on a Microgrooved Tool Surface. Guo Y; Liu X; Ji J; Wang Z; Hu X; Zhu Y; Zhang T; Tao T; Liu K; Jiao Y Langmuir; 2023 Jul; 39(28):9648-9659. PubMed ID: 37390023 [TBL] [Abstract][Full Text] [Related]
16. High jump of impinged droplets before Leidenfrost state. Qiu L; Dubey S; Choo FH; Duan F Phys Rev E; 2019 Mar; 99(3-1):033106. PubMed ID: 30999492 [TBL] [Abstract][Full Text] [Related]
17. Hydrodynamics of Leidenfrost droplets in one-component fluids. Xu X; Qian T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043013. PubMed ID: 23679519 [TBL] [Abstract][Full Text] [Related]
18. Inhibiting the Leidenfrost Effect by Superhydrophilic Nickel Foams with Ultrafast Droplet Permeation. Du J; Li Y; Wang X; Min Q ACS Appl Mater Interfaces; 2023 Aug; 15(34):41121-41129. PubMed ID: 37584594 [TBL] [Abstract][Full Text] [Related]
19. Effect of the Surface Peak-Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature. Jiao Y; Wang J; Guo Y; Du Y; Zhu Y; Ji J; Liu X; Liu K Langmuir; 2024 Oct; 40(39):20773-20782. PubMed ID: 39291359 [TBL] [Abstract][Full Text] [Related]
20. Design of Continuous Transport of the Droplet by the Contact-Boiling Regime. Wang S; Zhao X; Wu X; Zhang Q; Teng Y; Ahuja R; Zhang Y Langmuir; 2021 Jan; 37(1):553-560. PubMed ID: 33393313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]