These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33026519)
1. A GIS-expert-based approach for groundwater quality monitoring network design in an alluvial aquifer: a case study and a practical guide. Taheri K; Missimer TM; Amini V; Bahrami J; Omidipour R Environ Monit Assess; 2020 Oct; 192(11):684. PubMed ID: 33026519 [TBL] [Abstract][Full Text] [Related]
2. Redesigning and monitoring groundwater quality and quantity networks by using the entropy theory. Nazeri Tahroudi M; Khashei Siuki A; Ramezani Y Environ Monit Assess; 2019 Mar; 191(4):250. PubMed ID: 30919110 [TBL] [Abstract][Full Text] [Related]
3. GIS-based multi-criteria decision-making techniques and analytical hierarchical process for delineation of groundwater potential. Farhat B; Souissi D; Mahfoudhi R; Chrigui R; Sebei A; Ben Mammou A Environ Monit Assess; 2023 Jan; 195(2):285. PubMed ID: 36625986 [TBL] [Abstract][Full Text] [Related]
4. Application of Monitoring Network Design and Feedback Information for Adaptive Management of Coastal Groundwater Resources. Lal A; Datta B Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31717383 [TBL] [Abstract][Full Text] [Related]
5. An application of MC-SDSS for water supply management during a drought crisis. Jeihouni M; Toomanian A; Alavipanah SK; Shahabi M; Bazdar S Environ Monit Assess; 2015 Jul; 187(7):396. PubMed ID: 26038321 [TBL] [Abstract][Full Text] [Related]
6. Monitoring well utility in a heterogeneous DNAPL source zone area: Insights from proximal multilevel sampler wells and sampling capture-zone modelling. McMillan LA; Rivett MO; Wealthall GP; Zeeb P; Dumble P J Contam Hydrol; 2018 Mar; 210():15-30. PubMed ID: 29475775 [TBL] [Abstract][Full Text] [Related]
7. Source area management practices as remediation tool to address groundwater nitrate pollution in drinking supply wells. Bastani M; Harter T J Contam Hydrol; 2019 Oct; 226():103521. PubMed ID: 31330339 [TBL] [Abstract][Full Text] [Related]
9. Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project. De Filippis G; Piscitelli P; Castorini IF; Raho AM; Idolo A; Ungaro N; Lacarbonara F; Sgaramella E; Laghezza V; Chionna D; Fedele A; Galante B; Stasi R; Maggiotto G; Rizzo E; Nocita FR; Imbriani G; Serio F; Sansò P; Miani A; De Donno A; Gramegna D; Campanaro V; Francioso S; Bucci R; Carlà R; Rollo R; Chapman DV; Bruno V; On Behalf Of Local Health Authority Asl Lecce And Regional Agency For Environmental Protection Arpa Puglia Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32178314 [No Abstract] [Full Text] [Related]
10. Aquifer heterogeneity controls to quality monitoring network performance for the protection of groundwater production wells. Sarris TS; Kenny A; Scott DM; Close ME Water Res; 2022 Jun; 218():118485. PubMed ID: 35504158 [TBL] [Abstract][Full Text] [Related]
11. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design. Preziosi E; Petrangeli AB; Giuliano G Environ Monit Assess; 2013 May; 185(5):3759-81. PubMed ID: 22983640 [TBL] [Abstract][Full Text] [Related]
12. Impacts of drought phenomenon on the chemical quality of groundwater resources in the central part of Iran-application of GIS technique. Fallahati A; Soleimani H; Alimohammadi M; Dehghanifard E; Askari M; Eslami F; Karami L Environ Monit Assess; 2019 Dec; 192(1):64. PubMed ID: 31867698 [TBL] [Abstract][Full Text] [Related]
13. A robust decision-making approach for designing coastal groundwater quality monitoring networks. Hosseini M; Kerachian R Environ Sci Pollut Res Int; 2024 Oct; 31(48):58487-58504. PubMed ID: 39316209 [TBL] [Abstract][Full Text] [Related]
14. Geostatistics-based groundwater-level monitoring network design and its application to the Upper Floridan aquifer, USA. Bhat S; Motz LH; Pathak C; Kuebler L Environ Monit Assess; 2015 Jan; 187(1):4183. PubMed ID: 25433546 [TBL] [Abstract][Full Text] [Related]
15. Suitability for human consumption and agriculture purposes of Sminja aquifer groundwater in Zaghouan (north-east of Tunisia) using GIS and geochemistry techniques. Ameur M; Hamzaoui-Azaza F; Gueddari M Environ Geochem Health; 2016 Oct; 38(5):1147-1167. PubMed ID: 26537591 [TBL] [Abstract][Full Text] [Related]
16. A proposed modelling towards the potential impacts of climate change on a semi-arid, small-scaled aquifer: a case study of Iran. Nassery HR; Zeydalinejad N; Alijani F; Shakiba A Environ Monit Assess; 2021 Mar; 193(4):182. PubMed ID: 33712899 [TBL] [Abstract][Full Text] [Related]
17. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia. Marković T; Brkić Ž; Larva O Sci Total Environ; 2013 Aug; 458-460():508-16. PubMed ID: 23707721 [TBL] [Abstract][Full Text] [Related]
18. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Dehbandi R; Abbasnejad A; Karimi Z; Herath I; Bundschuh J Environ Pollut; 2019 Jun; 249():910-922. PubMed ID: 30965543 [TBL] [Abstract][Full Text] [Related]
19. Index-based Groundwater Sustainability Assessment in the Socio-Economic Context: a Case Study in the Western Iran. Majidipour F; Najafi SMB; Taheri K; Fathollahi J; Missimer TM Environ Manage; 2021 Apr; 67(4):648-666. PubMed ID: 33547485 [TBL] [Abstract][Full Text] [Related]
20. Complex hydrochemical characteristics of the Middle-Upper Pleistocene aquifer in Soc Trang Province, Southern Vietnam. Hoang HT; Bäumle R Environ Geochem Health; 2019 Feb; 41(1):325-341. PubMed ID: 30101398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]