BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33026606)

  • 1. Cuticle darkening correlates with increased body copper content in Drosophila melanogaster.
    Vásquez-Procopio J; Rajpurohit S; Missirlis F
    Biometals; 2020 Dec; 33(6):293-303. PubMed ID: 33026606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns.
    Wittkopp PJ; True JR; Carroll SB
    Development; 2002 Apr; 129(8):1849-58. PubMed ID: 11934851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis.
    Armstrong N; Ramamoorthy M; Lyon D; Jones K; Duttaroy A
    PLoS One; 2013; 8(1):e53186. PubMed ID: 23308159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophilids with darker cuticle have higher body temperature under light.
    Freoa L; Chevin LM; Christol P; Méléard S; Rera M; Véber A; Gibert JM
    Sci Rep; 2023 Mar; 13(1):3513. PubMed ID: 36864153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of the yellow gene (y) region of Drosophila melanogaster.
    Biessmann H
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7369-73. PubMed ID: 3933004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and spatial expression of the yellow gene in correlation with cuticle formation and dopa decarboxylase activity in Drosophila development.
    Walter MF; Black BC; Afshar G; Kermabon AY; Wright TR; Biessmann H
    Dev Biol; 1991 Sep; 147(1):32-45. PubMed ID: 1879614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pupal development and pigmentation process of a polka-dotted fruit fly, Drosophila guttifera (Insecta, Diptera).
    Fukutomi Y; Matsumoto K; Agata K; Funayama N; Koshikawa S
    Dev Genes Evol; 2017 Jun; 227(3):171-180. PubMed ID: 28280924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster.
    Kutch IC; Sevgili H; Wittman T; Fedorka KM
    J Exp Biol; 2014 Oct; 217(Pt 20):3664-9. PubMed ID: 25147243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the epidermis enhancer element in positive and negative transcriptional regulation of ebony in Drosophila melanogaster.
    Akiyama N; Sato S; Tanaka KM; Sakai T; Takahashi A
    G3 (Bethesda); 2022 Mar; 12(3):. PubMed ID: 35100378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex patterns of cis-regulatory polymorphisms in ebony underlie standing pigmentation variation in Drosophila melanogaster.
    Miyagi R; Akiyama N; Osada N; Takahashi A
    Mol Ecol; 2015 Dec; 24(23):5829-41. PubMed ID: 26503353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The TSC1/2 complex controls Drosophila pigmentation through TORC1-dependent regulation of catecholamine biosynthesis.
    Zitserman D; Gupta S; Kruger WD; Karbowniczek M; Roegiers F
    PLoS One; 2012; 7(11):e48720. PubMed ID: 23144943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of yellow gene regulation and pigmentation in Drosophila.
    Wittkopp PJ; Vaccaro K; Carroll SB
    Curr Biol; 2002 Sep; 12(18):1547-56. PubMed ID: 12372246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the developmental and cellular role of the pigmentation gene yellow in Drosophila using a tagged allele.
    Hinaux H; Bachem K; Battistara M; Rossi M; Xin Y; Jaenichen R; Le Poul Y; Arnoult L; Kobler JM; Grunwald Kadow IC; Rodermund L; Prud'homme B; Gompel N
    Dev Biol; 2018 Jun; 438(2):111-123. PubMed ID: 29634916
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Lamb AM; Wang Z; Simmer P; Chung H; Wittkopp PJ
    Front Ecol Evol; 2020 Jun; 8():. PubMed ID: 37035752
    [No Abstract]   [Full Text] [Related]  

  • 15. Gene functions in adult cuticle pigmentation of the yellow mealworm, Tenebrio molitor.
    Mun S; Noh MY; Kramer KJ; Muthukrishnan S; Arakane Y
    Insect Biochem Mol Biol; 2020 Feb; 117():103291. PubMed ID: 31812474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pigment content of cultured human melanocytes does not correlate with tyrosinase message level.
    Naeyaert JM; Eller M; Gordon PR; Park HY; Gilchrest BA
    Br J Dermatol; 1991 Oct; 125(4):297-303. PubMed ID: 1720016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholamine metabolism and in vitro induction of premature cuticle melanization in wild type and pigmentation mutants of Drosophila melanogaster.
    Walter MF; Zeineh LL; Black BC; McIvor WE; Wright TR; Biessmann H
    Arch Insect Biochem Physiol; 1996; 31(2):219-33. PubMed ID: 8580497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and correlated responses to laboratory selection for body melanisation in Drosophila melanogaster: support for the melanisation-desiccation resistance hypothesis.
    Ramniwas S; Kajla B; Dev K; Parkash R
    J Exp Biol; 2013 Apr; 216(Pt 7):1244-54. PubMed ID: 23239892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pigmentation and behavior: potential association through pleiotropic genes in Drosophila.
    Takahashi A
    Genes Genet Syst; 2013; 88(3):165-74. PubMed ID: 24025245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Metal Content in Drosophila melanogaster During Metal Exposure.
    Xiao G
    Methods Mol Biol; 2021; 2326():327-337. PubMed ID: 34097280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.