These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33027247)

  • 1. Biophysically detailed mathematical models of multiscale cardiac active mechanics.
    Regazzoni F; Dedè L; Quarteroni A
    PLoS Comput Biol; 2020 Oct; 16(10):e1008294. PubMed ID: 33027247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling and Numerical Simulation of the Actin-Myosin Interaction.
    Regazzoni F; Dedè L; Quarteroni A
    Vietnam J Math; 2021; 49(1):87-118. PubMed ID: 34722731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active contraction of cardiac cells: a reduced model for sarcomere dynamics with cooperative interactions.
    Regazzoni F; Dedè L; Quarteroni A
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1663-1686. PubMed ID: 30003434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the effects of dATP on cardiac contraction using multiscale modeling of the sarcomere.
    McCabe KJ; Aboelkassem Y; Teitgen AE; Huber GA; McCammon JA; Regnier M; McCulloch AD
    Arch Biochem Biophys; 2020 Nov; 695():108582. PubMed ID: 32956632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative reconstruction of cardiac electromechanics in human myocardium: assembly of electrophysiologic and tension generation models.
    Sachse FB; Seemann G; Chaisaowong K; Weiss D
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S210-8. PubMed ID: 14760926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Interactions in a 3D Model of the Contracting Ventricle.
    Amar A; Zlochiver S; Barnea O
    Cardiovasc Eng Technol; 2015 Dec; 6(4):401-11. PubMed ID: 26577475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force and velocity of sarcomere shortening in trabeculae from rat heart. Effects of temperature.
    de Tombe PP; ter Keurs HE
    Circ Res; 1990 May; 66(5):1239-54. PubMed ID: 2335024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes.
    Hatano A; Okada J; Hisada T; Sugiura S
    J Biomech; 2012 Mar; 45(5):815-23. PubMed ID: 22226404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico identification of potential calcium dynamics and sarcomere targets for recovering left ventricular function in rat heart failure with preserved ejection fraction.
    Longobardi S; Sher A; Niederer SA
    PLoS Comput Biol; 2021 Dec; 17(12):e1009646. PubMed ID: 34871310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology of myocardium. The relation between force, velocity, sarcomere length and activation in rat cardiac muscle.
    ter Keurs HE; de Tombe PP; Backx PH; Iwazumi T
    Biorheology; 1991; 28(3-4):161-70. PubMed ID: 1932708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model of the mouse ventricular myocyte contraction.
    Mullins PD; Bondarenko VE
    PLoS One; 2013; 8(5):e63141. PubMed ID: 23671664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes.
    Land S; Park-Holohan SJ; Smith NP; Dos Remedios CG; Kentish JC; Niederer SA
    J Mol Cell Cardiol; 2017 May; 106():68-83. PubMed ID: 28392437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction.
    Granzier H; Kellermayer M; Helmes M; Trombitás K
    Biophys J; 1997 Oct; 73(4):2043-53. PubMed ID: 9336199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to modeling crossbridges and calcium-dependent activation in cardiac muscle.
    Rice JJ; de Tombe PP
    Prog Biophys Mol Biol; 2004; 85(2-3):179-95. PubMed ID: 15142743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations.
    Kentish JC; ter Keurs HE; Ricciardi L; Bucx JJ; Noble MI
    Circ Res; 1986 Jun; 58(6):755-68. PubMed ID: 3719928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation.
    Syomin FA; Tsaturyan AK
    J Theor Biol; 2017 May; 420():105-116. PubMed ID: 28223172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical modeling of force generation in cardiac muscle.
    Kimmig F; Caruel M
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2567-2601. PubMed ID: 32681201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frank-Starling mechanism, fluid responsiveness, and length-dependent activation: Unravelling the multiscale behaviors with an in silico analysis.
    Kosta S; Dauby PC
    PLoS Comput Biol; 2021 Oct; 17(10):e1009469. PubMed ID: 34634040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.