These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33027533)

  • 21. Inertial focusing in microfluidics.
    Martel JM; Toner M
    Annu Rev Biomed Eng; 2014 Jul; 16():371-96. PubMed ID: 24905880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stretchable Inertial Microfluidic Device for Tunable Particle Separation.
    Fallahi H; Zhang J; Nicholls J; Phan HP; Nguyen NT
    Anal Chem; 2020 Sep; 92(18):12473-12480. PubMed ID: 32786464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical Study of Multivortex Regulation in Curved Microchannels with Ultra-Low-Aspect-Ratio.
    Shen S; Gao M; Zhang F; Niu Y
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33466925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
    Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A
    J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inertial microfluidics.
    Di Carlo D
    Lab Chip; 2009 Nov; 9(21):3038-46. PubMed ID: 19823716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel.
    Islam MS; Chen X
    Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Geometry-Dependent Efficiency of Dean-Flow Affected Lateral Particle Focusing and Separation in Periodically Inhomogeneous Microfluidic Channels.
    Bányai A; Tóth EL; Varga M; Fürjes P
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inertial focusing of microparticles, bacteria, and blood in serpentine glass channels.
    Rodriguez-Mateos P; Ngamsom B; Dyer CE; Iles A; Pamme N
    Electrophoresis; 2021 Nov; 42(21-22):2246-2255. PubMed ID: 34031893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput Inertial Focusing of Micrometer- and Sub-Micrometer-Sized Particles Separation.
    Wang L; Dandy DS
    Adv Sci (Weinh); 2017 Oct; 4(10):1700153. PubMed ID: 29051857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental and numerical study of elasto-inertial focusing in straight channels.
    Raoufi MA; Mashhadian A; Niazmand H; Asadnia M; Razmjou A; Warkiani ME
    Biomicrofluidics; 2019 May; 13(3):034103. PubMed ID: 31123535
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inertial microfluidics: Determining the effect of geometric key parameters on capture efficiency along with a feasibility evaluation for bone marrow cells sorting.
    Ghadiri MM; Hosseini SA; Sadatsakkak SA; Rajabpour A
    Biomed Microdevices; 2021 Aug; 23(3):41. PubMed ID: 34379212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inertial Separation of Particles Assisted by Symmetrical Sheath Flows in a Straight Microchannel.
    Zhang T; Inglis DW; Ngo L; Wang Y; Hosokawa Y; Yalikun Y; Li M
    Anal Chem; 2023 Jul; 95(29):11132-11140. PubMed ID: 37455389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational inertial microfluidics: a review.
    Razavi Bazaz S; Mashhadian A; Ehsani A; Saha SC; Krüger T; Ebrahimi Warkiani M
    Lab Chip; 2020 Mar; 20(6):1023-1048. PubMed ID: 32067001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inertial microfluidics in parallel channels for high-throughput applications.
    Hansson J; Karlsson JM; Haraldsson T; Brismar H; van der Wijngaart W; Russom A
    Lab Chip; 2012 Nov; 12(22):4644-50. PubMed ID: 22930164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.