These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33027745)

  • 1. Structural and functional changes of the protein β-lactoglobulin under thermal and electrical processing conditions.
    Baruah I; Borgohain G
    Biophys Chem; 2020 Dec; 267():106479. PubMed ID: 33027745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of moderate electric fields in β-lactoglobulin thermal unfolding and interactions.
    Rodrigues RM; Avelar Z; Vicente AA; Petersen SB; Pereira RN
    Food Chem; 2020 Jan; 304():125442. PubMed ID: 31491714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of thermal and microwave processing on secondary structure of bovine β-lactoglobulin: A molecular modeling study.
    Saxena R; Vanga SK; Raghavan V
    J Food Biochem; 2019 Jul; 43(7):e12898. PubMed ID: 31353721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites.
    Evoli S; Guzzi R; Rizzuti B
    Proteins; 2014 Oct; 82(10):2609-19. PubMed ID: 24916607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the co-solvent induced conformational changes and aggregation of bovine β-lactoglobulin.
    Pal S; Maity S; Sardar S; Chakraborty J; Halder UC
    Int J Biol Macromol; 2016 Mar; 84():121-34. PubMed ID: 26657584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of heterogeneous intermediate ensembles on the guanidinium chloride-induced unfolding pathway of β-lactoglobulin.
    Pandey P; Meena NK; Prakash A; Kumar V; Lynn AM; Ahmad F
    J Biomol Struct Dyn; 2020 Mar; 38(4):1042-1053. PubMed ID: 30880641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of urea-induced protein unfolding: a lesson from bovine β-lactoglobulin.
    Eberini I; Emerson A; Sensi C; Ragona L; Ricchiuto P; Pedretti A; Gianazza E; Tramontano A
    J Mol Graph Model; 2011 Sep; 30():24-30. PubMed ID: 21724434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of beta-lactoglobulin: their role in heat-induced sol-gel state transition.
    Relkin P
    Int J Biol Macromol; 1998 Feb; 22(1):59-66. PubMed ID: 9513817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. THz absorption spectroscopy of solvated β-lactoglobulin.
    Vondracek H; Dielmann-Gessner J; Lubitz W; Knipp M; Havenith M
    J Chem Phys; 2014 Dec; 141(22):22D534. PubMed ID: 25494805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of pH-induced transitions of beta-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies.
    Taulier N; Chalikian TV
    J Mol Biol; 2001 Dec; 314(4):873-89. PubMed ID: 11734004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption effectiveness of β-lactoglobulin onto gold surface determined by quartz crystal microbalance.
    Jachimska B; Świątek S; Loch JI; Lewiński K; Luxbacher T
    Bioelectrochemistry; 2018 Jun; 121():95-104. PubMed ID: 29413868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resveratrol Induces the Conversion from Amyloid to Amorphous Aggregation of β-lactoglobulin>.
    Ma B; Zhang F; Liu Y; Xie J; Wang X
    Protein Pept Lett; 2018 Feb; 24(12):1113-1119. PubMed ID: 28925863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The self-association and thermal denaturation of caprine and bovine β-lactoglobulin.
    Crowther JM; Allison JR; Smolenski GA; Hodgkinson AJ; Jameson GB; Dobson RCJ
    Eur Biophys J; 2018 Oct; 47(7):739-750. PubMed ID: 29663020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antigenicity and conformational changes of β-lactoglobulin by dynamic high pressure microfluidization combining with glycation treatment.
    Zhong J; Tu Y; Liu W; Xu Y; Liu C; Dun R
    J Dairy Sci; 2014; 97(8):4695-702. PubMed ID: 24952773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the permanent electric dipole moment of beta-lactoglobulin fibrils, using transient electric birefringence.
    Rogers SS; Venema P; van der Ploeg JP; van der Linden E; Sagis LM; Donald AM
    Biopolymers; 2006 Jun; 82(3):241-52. PubMed ID: 16489587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Simulation of β-Lactoglobulin at Different Oil/Water Interfaces.
    Zare D; Allison JR; McGrath KM
    Biomacromolecules; 2016 May; 17(5):1572-81. PubMed ID: 27075297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
    Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ
    J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between β-lactoglobulin and EGCG under high-pressure by molecular dynamics simulation.
    Huang Y; Zhang X; Suo H
    PLoS One; 2021; 16(12):e0255866. PubMed ID: 34932559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of high pressure effect on the structure and adsorption of β-lactoglobulin.
    Kurpiewska K; Biela A; Loch JI; Świątek S; Jachimska B; Lewiński K
    Colloids Surf B Biointerfaces; 2018 Jan; 161():387-393. PubMed ID: 29112912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.