BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 33027909)

  • 1. Densification, Microstructure, and Mechanical Properties of Additively Manufactured 2124 Al-Cu Alloy by Selective Laser Melting.
    Deng J; Chen C; Zhang W; Li Y; Li R; Zhou K
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Densification, Tailored Microstructure, and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Alloy via Annealing Heat Treatment.
    Wang D; Wang H; Chen X; Liu Y; Lu D; Liu X; Han C
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy.
    Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Process Parameters on the Microstructure and Properties of Cu-Cr-Nb-Ti Alloy Manufactured by Selective Laser Melting.
    Li J; Liu Z; Zhou H; Ye S; Zhang Y; Liu T; Jiang D; Chen L; Zhou R
    Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing Feasibility and Forming Properties of Cu-4Sn in Selective Laser Melting.
    Mao Z; Zhang DZ; Wei P; Zhang K
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on Microstructure and Properties of AlSi10Mg Fabricated by Selective Laser Melting.
    Pan W; Ye Z; Zhang Y; Liu Y; Liang B; Zhai Z
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting.
    Jaber H; Kónya J; Kulcsár K; Kovács T
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and Mechanical Properties of Al-Li Alloys with Different Li Contents Prepared by Selective Laser Melting.
    Shao S; Liang Z; Yin P; Li X; Zhang Y
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Properties of High-Strength Cu-Cr-Zr Alloy Fabricated by Selective Laser Melting.
    Sun F; Liu P; Chen X; Zhou H; Guan P; Zhu B
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing Technologies and Properties of Cu-10Sn Formed by Selective Laser Melting Combined with Heat Treatment.
    Wang H; Guo L; Nie Z; Lyu Q; Zhang Q
    3D Print Addit Manuf; 2021 Feb; 8(1):13-22. PubMed ID: 36655180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circumventing Solidification Cracking Susceptibility in Al-Cu Alloys Prepared by Laser Powder Bed Fusion.
    Xi L; Lu Q; Gu D; Cao S; Zhang H; Kaban I; Sarac B; Prashanth KG; Eckert J
    3D Print Addit Manuf; 2024 Apr; 11(2):e731-e742. PubMed ID: 38689899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Selective Laser Melting Process Parameters on Microstructure and Properties of Co-Cr Alloy.
    Wang JH; Ren J; Liu W; Wu XY; Gao MX; Bai PK
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30150584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Silicon and Magnesium on the Mechanical Properties of Additive Manufactured Cu-Al Alloy.
    Wang Y; Konovalov S; Chen X; Ramachandra AS; Subramanian J
    3D Print Addit Manuf; 2021 Oct; 8(5):331-339. PubMed ID: 36654935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure, Mechanical Properties, and Corrosion Resistance of Ag-Cu Alloys with La
    Zhao X; Zheng H; Ma X; Sheng Y; Zeng D; Yuan J
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties.
    Tan C; Zhou K; Ma W; Attard B; Zhang P; Kuang T
    Sci Technol Adv Mater; 2018; 19(1):370-380. PubMed ID: 29707073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Additive manufacturing of ultrafine-grained high-strength titanium alloys.
    Zhang D; Qiu D; Gibson MA; Zheng Y; Fraser HL; StJohn DH; Easton MA
    Nature; 2019 Dec; 576(7785):91-95. PubMed ID: 31802014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Substrate Plate Heating on the Microstructure and Properties of Selective Laser Melted Al-20Si-5Fe-3Cu-1Mg Alloy.
    Ma P; Ji P; Jia Y; Shi X; Yu Z; Prashanth KG
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33440648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Heat Treatments on Microstructure and Mechanical Properties of Ti⁻26Nb Alloy Elaborated In Situ by Laser Additive Manufacturing with Ti and Nb Mixed Powder.
    Wei J; Sun H; Zhang D; Gong L; Lin J; Wen C
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30585185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring Microstructure and Mechanical Properties of Additively-Manufactured Ti6Al4V Using Post Processing.
    Ganor YI; Tiferet E; Vogel SC; Brown DW; Chonin M; Pesach A; Hajaj A; Garkun A; Samuha S; Shneck RZ; Yeheskel O
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropy in the Tensile Properties of a Selective Laser Melted Ti-5Al-5Mo-5V-1Cr-1Fe Alloy during Aging Treatment.
    Huang H; Zhang T; Chen C; Hosseini SRE; Zhang J; Zhou K
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.