These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2841 related articles for article (PubMed ID: 33028329)

  • 1. Development and validation of a robust immune-related prognostic signature in early-stage lung adenocarcinoma.
    Wu P; Zheng Y; Wang Y; Wang Y; Liang N
    J Transl Med; 2020 Oct; 18(1):380. PubMed ID: 33028329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Seven-Gene Signature with Close Immune Correlation Was Identified for Survival Prediction of Lung Adenocarcinoma.
    Zou X; Hu Z; Huang C; Chang J
    Med Sci Monit; 2020 Jul; 26():e924269. PubMed ID: 32613949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell Lung Cancer.
    Li B; Cui Y; Diehn M; Li R
    JAMA Oncol; 2017 Nov; 3(11):1529-1537. PubMed ID: 28687838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immune landscape and a promising immune prognostic model associated with TP53 in early-stage lung adenocarcinoma.
    Wu C; Rao X; Lin W
    Cancer Med; 2021 Feb; 10(3):806-823. PubMed ID: 33314730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a novel epigenetic-related prognostic signature and candidate drugs for patients with lung adenocarcinoma.
    Wang Z; Embaye KS; Yang Q; Qin L; Zhang C; Liu L; Zhan X; Zhang F; Wang X; Qin S
    Aging (Albany NY); 2021 Jul; 13(14):18701-18717. PubMed ID: 34285141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of an immune signature predicting prognosis risk of patients in lung adenocarcinoma.
    Song Q; Shang J; Yang Z; Zhang L; Zhang C; Chen J; Wu X
    J Transl Med; 2019 Mar; 17(1):70. PubMed ID: 30832680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a multidimensional transcriptome prognostic signature for lung adenocarcinoma.
    Ye J; Liu H; Xu ZL; Zheng L; Liu RY
    J Clin Lab Anal; 2019 Nov; 33(9):e22990. PubMed ID: 31402485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristic of molecular subtypes in lung adenocarcinoma based on m6A RNA methylation modification and immune microenvironment.
    Zhou H; Zheng M; Shi M; Wang J; Huang Z; Zhang H; Zhou Y; Shi J
    BMC Cancer; 2021 Aug; 21(1):938. PubMed ID: 34416861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a methylomics-associated nomogram for predicting overall survival of stage I-II lung adenocarcinoma.
    Wang H; Wei C; Pan P; Yuan F; Cheng J
    Sci Rep; 2021 May; 11(1):9938. PubMed ID: 33976305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of 5-Gene Signature Improves Lung Adenocarcinoma Prognostic Stratification Based on Differential Expression Invasion Genes of Molecular Subtypes.
    Zheng Z; Deng W; Yang J
    Biomed Res Int; 2020; 2020():8832739. PubMed ID: 33490259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel ferroptosis-related gene signature for prognostic prediction of patients with lung adenocarcinoma.
    Jin J; Liu C; Yu S; Cai L; Sitrakiniaina A; Gu R; Li W; Wu F; Xue X
    Aging (Albany NY); 2021 Jun; 13(12):16144-16164. PubMed ID: 34115610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of a novel gene expression signature associated with overall survival in patients with lung adenocarcinoma: A comprehensive analysis based on TCGA and GEO databases.
    Zhao J; Guo C; Ma Z; Liu H; Yang C; Li S
    Lung Cancer; 2020 Nov; 149():90-96. PubMed ID: 33002836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A seven-gene prognostic signature predicts overall survival of patients with lung adenocarcinoma (LUAD).
    Al-Dherasi A; Huang QT; Liao Y; Al-Mosaib S; Hua R; Wang Y; Yu Y; Zhang Y; Zhang X; Huang C; Mousa H; Ge D; Sufiyan S; Bai W; Liu R; Shao Y; Li Y; Zhang J; Shi L; Lv D; Li Z; Liu Q
    Cancer Cell Int; 2021 Jun; 21(1):294. PubMed ID: 34092242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A large cohort study identifying a novel prognosis prediction model for lung adenocarcinoma through machine learning strategies.
    Li Y; Ge D; Gu J; Xu F; Zhu Q; Lu C
    BMC Cancer; 2019 Sep; 19(1):886. PubMed ID: 31488089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and analysis of a novel ferroptosis-related gene signature predicting prognosis in lung adenocarcinoma.
    Zhou J; Wang X; Li Z; Jiang R
    FEBS Open Bio; 2021 Nov; 11(11):3005-3018. PubMed ID: 34499810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eight-gene signature predicts recurrence in lung adenocarcinoma.
    Zhang Y; Fan Q; Guo Y; Zhu K
    Cancer Biomark; 2020; 28(4):447-457. PubMed ID: 32508318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust six-gene prognostic signature for prediction of both disease-free and overall survival in non-small cell lung cancer.
    Zuo S; Wei M; Zhang H; Chen A; Wu J; Wei J; Dong J
    J Transl Med; 2019 May; 17(1):152. PubMed ID: 31088477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification Six Metabolic Genes as Potential Biomarkers for Lung Adenocarcinoma.
    Zhang S; Lu Y; Liu Z; Li X; Wang Z; Cai Z
    J Comput Biol; 2020 Oct; 27(10):1532-1543. PubMed ID: 32298601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of endoplasmic reticulum stress-related eight-gene signature for predicting the overall survival of lung adenocarcinoma.
    Lin L; Zhang W
    Transl Cancer Res; 2022 Jul; 11(7):1909-1924. PubMed ID: 35966313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a three-gene expression signature and construction of a prognostic nomogram predicting overall survival in lung adenocarcinoma based on TCGA and GEO databases.
    Zhou Y; Gao S; Yang R; Du C; Wang Y; Wu Y
    Transl Lung Cancer Res; 2022 Jul; 11(7):1479-1496. PubMed ID: 35958325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 143.