These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 33028354)

  • 21. Usability test of a hand exoskeleton for activities of daily living: an example of user-centered design.
    Almenara M; Cempini M; Gómez C; Cortese M; Martín C; Medina J; Vitiello N; Opisso E
    Disabil Rehabil Assist Technol; 2017 Jan; 12(1):84-96. PubMed ID: 26376019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unsupervised robot-assisted rehabilitation after stroke: feasibility, effect on therapy dose, and user experience.
    Devittori G; Dinacci D; Romiti D; Califfi A; Petrillo C; Rossi P; Ranzani R; Gassert R; Lambercy O
    J Neuroeng Rehabil; 2024 Apr; 21(1):52. PubMed ID: 38594727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robotic Exoskeleton for Wrist and Fingers Joint in Post-Stroke Neuro-Rehabilitation for Low-Resource Settings.
    Singh N; Saini M; Anand S; Kumar N; Srivastava MVP; Mehndiratta A
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2369-2377. PubMed ID: 31545737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supinator Extender (SUE): a pneumatically actuated robot for forearm/wrist rehabilitation after stroke.
    Allington J; Spencer SJ; Klein J; Buell M; Reinkensmeyer DJ; Bobrow J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1579-82. PubMed ID: 22254624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Feasibility study into self-administered training at home using an arm and hand device with motivational gaming environment in chronic stroke.
    Nijenhuis SM; Prange GB; Amirabdollahian F; Sale P; Infarinato F; Nasr N; Mountain G; Hermens HJ; Stienen AH; Buurke JH; Rietman JS
    J Neuroeng Rehabil; 2015 Oct; 12():89. PubMed ID: 26452749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study.
    Masia L; Casadio M; Giannoni P; Sandini G; Morasso P
    J Neuroeng Rehabil; 2009 Dec; 6():44. PubMed ID: 19968873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke.
    Mehrholz J; Pollock A; Pohl M; Kugler J; Elsner B
    J Neuroeng Rehabil; 2020 Jun; 17(1):83. PubMed ID: 32605587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Designing for usability: development and evaluation of a portable minimally-actuated haptic hand and forearm trainer for unsupervised stroke rehabilitation.
    Rätz R; Ratschat AL; Cividanes-Garcia N; Ribbers GM; Marchal-Crespo L
    Front Neurorobot; 2024; 18():1351700. PubMed ID: 38638360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and pilot testing of HEXORR: hand EXOskeleton rehabilitation robot.
    Schabowsky CN; Godfrey SB; Holley RJ; Lum PS
    J Neuroeng Rehabil; 2010 Jul; 7():36. PubMed ID: 20667083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH; Park G; Kim HY; Lee JY; Ham Y; Hwang D; Kwon S; Shin JH
    J Neuroeng Rehabil; 2020 Oct; 17(1):137. PubMed ID: 33076952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociating motor learning from recovery in exoskeleton training post-stroke.
    Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O
    J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a compliant, stabilizing wrist mechanism for a pediatric hand exoskeleton.
    Dittli J; Vasileiou C; Asanovski H; Lieber J; Lin JB; Meyer-Heim A; Van Hedel HJA; Gassert R; Lambercy O
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects.
    Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combination of Exoskeletal Upper Limb Robot and Occupational Therapy Improve Activities of Daily Living Function in Acute Stroke Patients.
    Iwamoto Y; Imura T; Suzukawa T; Fukuyama H; Ishii T; Taki S; Imada N; Shibukawa M; Inagawa T; Araki H; Araki O
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2018-2025. PubMed ID: 31047819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A usability study on mobile EMG-guided wrist extension training in subacute stroke patients-MyoGuide.
    Lin HP; Xu Y; Zhang X; Woolley D; Zhao L; Liang W; Huang M; Cheng HJ; Zhang L; Wenderoth N
    J Neuroeng Rehabil; 2024 Mar; 21(1):39. PubMed ID: 38515192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation.
    Bian H; Chen Z; Wang H; Zhao T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():689-694. PubMed ID: 28813900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.