These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33028514)

  • 1. Coherent Förster resonance energy transfer: A new paradigm for electrically driven quantum dot random lasers.
    Shen TL; Hu HW; Lin WJ; Liao YM; Chen TP; Liao YK; Lin TY; Chen YF
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33028514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Förster resonance energy transfer on layered metal-dielectric hyperbolic metamaterials: an excellent platform for low-threshold laser action.
    Shih CT; Chao YC; Shen JL; Chen YF
    Opt Express; 2023 Apr; 31(8):12669-12679. PubMed ID: 37157422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic FRET lasers using aqueous quantum dots as donors.
    Chen Q; Kiraz A; Fan X
    Lab Chip; 2016 Jan; 16(2):353-9. PubMed ID: 26659274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films.
    Guzelturk B; Kelestemur Y; Akgul MZ; Sharma VK; Demir HV
    J Phys Chem Lett; 2014 Jul; 5(13):2214-8. PubMed ID: 26279536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity.
    Roh J; Park YS; Lim J; Klimov VI
    Nat Commun; 2020 Jan; 11(1):271. PubMed ID: 31937771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically pumped 1.5  μm InP-based quantum dot microring lasers directly grown on (001) Si.
    Zhu S; Shi B; Lau KM
    Opt Lett; 2019 Sep; 44(18):4566-4569. PubMed ID: 31517932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolayer semiconductor nanocavity lasers with ultralow thresholds.
    Wu S; Buckley S; Schaibley JR; Feng L; Yan J; Mandrus DG; Hatami F; Yao W; Vučković J; Majumdar A; Xu X
    Nature; 2015 Apr; 520(7545):69-72. PubMed ID: 25778703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-tuned quantum dot gain in photonic crystal lasers.
    Strauf S; Hennessy K; Rakher MT; Choi YS; Badolato A; Andreani LC; Hu EL; Petroff PM; Bouwmeester D
    Phys Rev Lett; 2006 Mar; 96(12):127404. PubMed ID: 16605958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward electrically driven semiconductor nanowire lasers.
    Zhang Y; Saxena D; Aagesen M; Liu H
    Nanotechnology; 2019 May; 30(19):192002. PubMed ID: 30658345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand Engineering and Recrystallization of Perovskite Quantum-Dot Thin Film for Low-Threshold Plasmonic Lattice Laser.
    Xing D; Lin CC; Ho YL; Lee YC; Chen MH; Lin BW; Chen CW; Delaunay JJ
    Small; 2022 Nov; 18(44):e2204070. PubMed ID: 36123147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Induced Mode-Locking in Electrically Pumped Far-Infrared Random Lasers.
    Di Gaspare A; Pistore V; Riccardi E; Pogna EAA; Beere HE; Ritchie DA; Li L; Davies AG; Linfield EH; Ferrari AC; Vitiello MS
    Adv Sci (Weinh); 2023 Mar; 10(9):e2206824. PubMed ID: 36707499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherent Random Lasing in Colloidal Quantum Dot-Doped Polymer-Dispersed Liquid Crystal with Low Threshold and High Stability.
    Wang Z; Cao M; Shao G; Zhang Z; Yu H; Chen Y; Zhang Y; Li Y; Xu B; Wang Y; Yao J
    J Phys Chem Lett; 2020 Feb; 11(3):767-774. PubMed ID: 31934764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabry-Perot Oscillation and Resonance Energy Transfer: Mechanism for Ultralow-Threshold Optically and Electrically Driven Random Laser in Quasi-2D Ruddlesden-Popper Perovskites.
    Bera KP; Hanmandlu C; Lin HI; Ghosh R; Gudelli VK; Lai CS; Chu CW; Chen YF
    ACS Nano; 2023 Mar; 17(6):5373-5386. PubMed ID: 36897286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanthanide-to-quantum dot Förster resonance energy transfer (FRET): Application for immunoassay.
    Goryacheva OA; Beloglazova NV; Vostrikova AM; Pozharov MV; Sobolev AM; Goryacheva IY
    Talanta; 2017 Mar; 164():377-385. PubMed ID: 28107944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.
    Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV
    Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A long-wavelength quantum dot-concentric FRET configuration: characterization and application in a multiplexed hybridization assay.
    Li JJ; Algar WR
    Analyst; 2016 Jun; 141(12):3636-47. PubMed ID: 27048838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentric FRET: a review of the emerging concept, theory, and applications.
    Tsai HY; Kim H; Massey M; Krause KD; Algar WR
    Methods Appl Fluoresc; 2019 Jul; 7(4):042001. PubMed ID: 31359875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green Stimulated Emission Boosted by Nonradiative Resonant Energy Transfer from Blue Quantum Dots.
    Gao Y; Yu G; Wang Y; Dang C; Sum TC; Sun H; Demir HV
    J Phys Chem Lett; 2016 Jul; 7(14):2772-8. PubMed ID: 27388758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically pumped topological laser with valley edge modes.
    Zeng Y; Chattopadhyay U; Zhu B; Qiang B; Li J; Jin Y; Li L; Davies AG; Linfield EH; Zhang B; Chong Y; Wang QJ
    Nature; 2020 Feb; 578(7794):246-250. PubMed ID: 32051601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perovskite Quantum Dots Lasing in Double-Heterostructure through Energy Transfer.
    Chu Z; Li Y; Cong R; Mao X; Li Y; Xu W; Gao Y; Ran G
    Nano Lett; 2024 May; 24(20):6010-6016. PubMed ID: 38739874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.