These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 33028519)

  • 1. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface.
    Le JB; Fan QY; Li JQ; Cheng J
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33028519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Electrified Pt(111)-H
    Le JB; Chen A; Li L; Xiong JF; Lan J; Liu YP; Iannuzzi M; Cheng J
    JACS Au; 2021 May; 1(5):569-577. PubMed ID: 34467320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular understanding of the Helmholtz capacitance difference between Cu(100) and graphene electrodes.
    Li XY; Jin XF; Yang XH; Wang X; Le JB; Cheng J
    J Chem Phys; 2023 Feb; 158(8):084701. PubMed ID: 36859091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of Asymmetric Electric Double Layers at Electrified Oxide/Electrolyte Interfaces.
    Jia M; Zhang C; Cheng J
    J Phys Chem Lett; 2021 May; 12(19):4616-4622. PubMed ID: 33973792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular understanding of cation effects on double layers and their significance to CO-CO dimerization.
    Le JB; Chen A; Kuang Y; Cheng J
    Natl Sci Rev; 2023 Sep; 10(9):nwad105. PubMed ID: 37842071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Effects of Electrode Material, Single Crystal Facet, and Electrolyte Ion on the Helmholtz Capacitance of Metal/Aqueous Solution Interfaces.
    Wang X; Wang Y; Kuang Y; Le JB
    J Phys Chem Lett; 2023 Sep; 14(35):7833-7839. PubMed ID: 37624858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized Helmholtz model describes capacitance profiles of ionic liquids and concentrated aqueous electrolytes.
    Park S; McDaniel JG
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38651812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Pt(
    Xue S; Chaudhary P; Nouri MR; Gubanova E; Garlyyev B; Alexandrov V; Bandarenka AS
    J Am Chem Soc; 2024 Feb; 146(6):3883-3889. PubMed ID: 38316015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of Surface Chemistry and Electric Double Layer at TiO
    Zhang C; Hutter J; Sprik M
    J Phys Chem Lett; 2019 Jul; 10(14):3871-3876. PubMed ID: 31241948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic Response and Charge Inversion at Polarized Gold Electrode.
    Andersson L; Sprik M; Hutter J; Zhang C
    Angew Chem Int Ed Engl; 2024 Sep; ():e202413614. PubMed ID: 39313472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential-Dependent Pt(111)/Water Interface: Tackling the Challenge of a Consistent Treatment of Electrochemical Interfaces.
    Braunwarth L; Jung C; Jacob T
    Chemphyschem; 2023 Jan; 24(1):e202200336. PubMed ID: 36123306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication: Computing the Helmholtz capacitance of charged insulator-electrolyte interfaces from the supercell polarization.
    Zhang C
    J Chem Phys; 2018 Jul; 149(3):031103. PubMed ID: 30037260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of applied voltage on water at a gold electrode interface from
    Goldsmith ZK; Calegari Andrade MF; Selloni A
    Chem Sci; 2021 Mar; 12(16):5865-5873. PubMed ID: 34168811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces.
    Zhou S; Panse KS; Motevaselian MH; Aluru NR; Zhang Y
    ACS Nano; 2020 Dec; 14(12):17515-17523. PubMed ID: 33227191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow and fast capacitive process taking place at the ionic liquid/electrode interface.
    Roling B; Drüschler M; Huber B
    Faraday Discuss; 2012; 154():303-11; discussion 313-33, 465-71. PubMed ID: 22455027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemistry, ion adsorption and dynamics in the double layer: a study of NaCl(aq) on graphite.
    Finney AR; McPherson IJ; Unwin PR; Salvalaglio M
    Chem Sci; 2021 Aug; 12(33):11166-11180. PubMed ID: 34522314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of electrified interfaces including the metal polarisation.
    Ntim S; Sulpizi M
    Phys Chem Chem Phys; 2023 Aug; 25(34):22619-22625. PubMed ID: 37555300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular insights into the electric double layers of ionic liquids on Au(100) electrodes.
    Sha M; Dou Q; Luo F; Zhu G; Wu G
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12556-65. PubMed ID: 25046476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ probing electrified interfacial water structures at atomically flat surfaces.
    Li CY; Le JB; Wang YH; Chen S; Yang ZL; Li JF; Cheng J; Tian ZQ
    Nat Mater; 2019 Jul; 18(7):697-701. PubMed ID: 31036960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.