These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33028812)

  • 1. A deep learning approach to programmable RNA switches.
    Angenent-Mari NM; Garruss AS; Soenksen LR; Church G; Collins JJ
    Nat Commun; 2020 Oct; 11(1):5057. PubMed ID: 33028812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence-to-function deep learning frameworks for engineered riboregulators.
    Valeri JA; Collins KM; Ramesh P; Alcantar MA; Lepe BA; Lu TK; Camacho DM
    Nat Commun; 2020 Oct; 11(1):5058. PubMed ID: 33028819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.
    Ceres P; Garst AD; Marcano-Velázquez JG; Batey RT
    ACS Synth Biol; 2013 Aug; 2(8):463-72. PubMed ID: 23654267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of orthogonally selective bacterial riboswitches by targeted mutagenesis and in vivo screening.
    Vincent HA; Robinson CJ; Wu MC; Dixon N; Micklefield J
    Methods Mol Biol; 2014; 1111():107-29. PubMed ID: 24549615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria.
    Ekdahl AM; Rojano-Nisimura AM; Contreras LM
    J Mol Biol; 2022 Sep; 434(18):167689. PubMed ID: 35717997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic folding design of aptazyme-regulated expression devices as riboswitches for metabolic engineering.
    Sparkman-Yager D; Correa-Rojas RA; Carothers JM
    Methods Enzymol; 2015; 550():321-40. PubMed ID: 25605393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators.
    Wittmann A; Suess B
    FEBS Lett; 2012 Jul; 586(15):2076-83. PubMed ID: 22710175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic small RNAs: Current status, challenges, and opportunities.
    Patel S; Panchasara H; Braddick D; Gohil N; Singh V
    J Cell Biochem; 2018 Dec; 119(12):9619-9639. PubMed ID: 30010218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of synthetic riboswitch in cell-free protein expression systems.
    Chushak Y; Harbaugh S; Zimlich K; Alfred B; Chávez J; Kelley-Loughnane N
    RNA Biol; 2021 Nov; 18(11):1727-1738. PubMed ID: 33427029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme.
    Kobori S; Takahashi K; Yokobayashi Y
    ACS Synth Biol; 2017 Jul; 6(7):1283-1288. PubMed ID: 28398719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Design of Diverse Stand-Alone Riboswitches.
    Wu MJ; Andreasson JOL; Kladwang W; Greenleaf W; Das R
    ACS Synth Biol; 2019 Aug; 8(8):1838-1846. PubMed ID: 31298841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Aptazyme Switches for Conditional Gene Expression in Mammalian Cells Utilizing an In Vivo Screening Approach.
    Rehm C; Klauser B; Finke M; Hartig JS
    Methods Mol Biol; 2021; 2323():199-212. PubMed ID: 34086282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the Performance of Synthetic Riboswitches using Machine Learning.
    Groher AC; Jager S; Schneider C; Groher F; Hamacher K; Suess B
    ACS Synth Biol; 2019 Jan; 8(1):34-44. PubMed ID: 30513199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes.
    Nomura Y; Zhou L; Miu A; Yokobayashi Y
    ACS Synth Biol; 2013 Dec; 2(12):684-9. PubMed ID: 23697539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology.
    Kang Z; Zhang C; Zhang J; Jin P; Zhang J; Du G; Chen J
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3413-24. PubMed ID: 24519458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic
    Irla M; Hakvåg S; Brautaset T
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Biology to Engineer Bacteriophage Genomes.
    Rita Costa A; Milho C; Azeredo J; Pires DP
    Methods Mol Biol; 2018; 1693():285-300. PubMed ID: 29119447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of infectious poliovirus from synthetic viral genomes.
    Cello J; Mueller S
    Methods Mol Biol; 2012; 852():181-93. PubMed ID: 22328434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.